Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(12): 1843-1856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38378175

RESUMO

BACKGROUND AND PURPOSE: Our previous studies have found that andrographolide (AGP) alleviates calcific aortic valve disease (CAVD), but the underlying mechanism is unclear. This study explores the molecular target and signal mechanisms of AGP in inhibiting CAVD. EXPERIMENTAL APPROACH: The anti-calcification effects of the aortic valve with AGP treatment were evaluated by alizarin red staining in vitro and ultrasound and histopathological assessment of a high-fat (HF)-fed ApoE-/- mouse valve calcification model. A correlation between the H3 histone lactylation (H3Kla) and calcification was detected. Molecular docking and surface plasmon resonance (SPR) experiments were further used to confirm p300 as a target for AGP. Overexpression (oe) and silencing (si) of p300 were used to verify the inhibitory effect of AGP targeting p300 on the H3Kla in vitro and ex vivo. KEY RESULTS: AGP significantly inhibited calcium deposition in valve interstitial cells (VICs) and ameliorated aortic valve calcification. The multi-omics analysis revealed the glycolysis pathway involved in CAVD, indicating that AGP interfered with lactate production by regulating lactate dehydrogenase A (LDHA). In addition, lactylation, a new post-translational modification, was shown to have a role in promoting aortic valve calcification. Furthermore, H3Kla and H3K9la site were shown to correlate with Runx2 expression inhibition by AGP treatment. Importantly, we found that p300 transferase was the molecular target of AGP in inhibiting H3Kla. CONCLUSIONS AND IMPLICATIONS: Our findings, for the first time, demonstrated that AGP alleviates calcification by interfering with H3Kla via p300, which might be a powerful drug to prevent CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Diterpenos , Histonas , Animais , Humanos , Masculino , Camundongos , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Valva Aórtica/efeitos dos fármacos , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/metabolismo , Calcinose/tratamento farmacológico , Calcinose/patologia , Diterpenos/farmacologia , Diterpenos/química , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/antagonistas & inibidores , Histonas/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores
2.
Phytomedicine ; 118: 154940, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453194

RESUMO

BACKGROUND AND PURPOSE: Human hepatocellular carcinoma (HCC) features include enhanced glycolysis and elevated lactate concentrations. Accumulation of lactate during metabolism provides a precursor for histone lysine modification. This study was designed to determine whether royal jelly acid (RJA) acts against HCC through the lactate modification pathway. EXPERIMENTAL APPROACH: The effects of RJA on Hep3B and HCCLM3 cell invasion, migration, proliferation, and apoptosis were investigated using cell scratching, colony formation assay, flow cytometry, western blotting, and real-time qPCR, gas chromatography, and RNA sequencing to determine the pathways and molecular targets involved. Tumor xenografts were used to evaluate the anti-HCC effects of RJA in vivo. In-cell Western blotting and expression correlation analysis were applied to confirm the associations between H3 histone lactylation and the antitumor effects of RJA. KEY RESULTS: RJA has good antitumor effects in vivo and in vitro. Multi-omics analysis with metabolome and transcriptome determined that the glycolytic metabolic pathway provided the principle antitumor effect of RJA. Further mechanistic studies showed that RJA inhibited HCC development by interfering with lactate production and inhibiting H3 histone lactylation at H3K9la and H3K14la sites. CONCLUSIONS AND IMPLICATIONS: This study first demonstrated that RJA exerts antitumor effects by affecting the glycolytic pathway. RJA could regulate the lactylation of H3K9la and H3K14la sites on H3 histone using lactate as a clue in the glycolytic pathway. Therefore, the lactylation of H3 histone is vital in exerting the antitumor effect of RJA, providing new evidence for screening and exploring antitumor drug mechanisms in the later stage.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Histonas/metabolismo , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Ácido Láctico
3.
Phytother Res ; 37(3): 820-833, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36420870

RESUMO

Atractylenolide-1 (AT-1) is a major octanol alkaloid isolated from Atractylodes Rhizoma and is widely used to treat various diseases. However, few reports have addressed the anticancer potential of AT-1, and the underlying molecular mechanisms of its anticancer effects are unclear. This study aimed to assess the effect of AT-1 on triple-negative breast cancer (TNBC) cell proliferation and migration and explore its potential molecular mechanisms. Cell invasion assays confirmed that the number of migrating cells decreased after AT-1 treatment. Colony formation assays showed that AT-1 treatment impaired the ability of MDA-MB-231 cells to form colonies. AT-1 inhibited the expression of p-p38, p-ERK, and p-AKT in MDA-MB-231 cells, significantly downregulated the proliferation of anti-apoptosis-related proteins CDK1, CCND1, and Bcl2, and up-regulated pro-apoptotic proteins Bak, caspase 3, and caspase 9. The gas chromatography-mass spectroscopy results showed that AT-1 downregulated the metabolism-related genes TPI1 and GPI through the glycolysis/gluconeogenesis pathway and inhibited tumor growth in vivo. AT-1 affected glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI, inhibiting the proliferation, migration, and invasion of (TNBC) MDA-MB-231 cells and suppressing tumor growth in vivo.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Gluconeogênese , Antineoplásicos/farmacologia , Proliferação de Células , Movimento Celular
4.
Front Pharmacol ; 13: 1025860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452234

RESUMO

Cancer is the second leading cause of elevated mortality worldwide. Thus, the development of drugs and treatments is needed to enhance the survival rate of the cancer-affected population. Recently, gut microbiota research in the healthy development of the human body has garnered widespread attention. Many reports indicate that changes in the gut microbiota are strongly associated with chronic inflammation-related diseases, including colitis, liver disease, and cancer within the intestine and the extraintestinal tract. Different gut bacteria are vital in the occurrence and development of tumors within the gut and extraintestinal tract. The human gut microbiome has significant implications for human physiology, including metabolism, nutrient absorption, and immune function. Moreover, diet and lifestyle habits are involved in the evolution of the human microbiome throughout the lifetime of the host and are involved in drug metabolism. Probiotics are a functional food with a protective role in cancer development in animal models. Probiotics alter the gut microbiota in the host; thus, beneficial bacterial activity is stimulated, and detrimental activity is inhibited. Clinical applications have revealed that some probiotic strains could reduce the occurrence of postoperative inflammation among cancer patients. An association network was constructed by analyzing the previous literature to explore the role of probiotics from the anti-tumor perspective. Therefore, it provides direction and insights for research on tumor treatment.

5.
Biofactors ; 48(4): 883-896, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35118741

RESUMO

Daidzin (DDZ) is a natural brassin-like compound extracted from the soybean, and has been found to have therapeutic potential against tumors in recent years. This study investigates the therapeutic effect of DDZ on hepatocellular carcinoma cells and elucidates the possible mechanisms of action. The viability of HCCLM3 and Hep3B cells was detected by MTT assay. Western blots and qPCR were used to detect the protein and mRNA levels of proliferation and apoptosis related genes. Gas chromatography-mass spectrometry (GC-MS) was used for metabolome analysis. In vivo antitumor effects were assessed in nude mice engrafted with HCC cell lines. Our results show that DDZ treatment dose-dependently inhibited cell viability, migration, and survival. The expressions of CDK1, BCL2, MYC, and survivin were reduced, while the expressions of BAX and PARP were increased in DDZ treated cells. The differentially expressed metabolites detected in DDZ treated cultures are associated with glycolysis/gluconeogenesis pathways. Bioinformatic analysis identified TPI1, a gene in the glycolysis pathway with prognostic value for hepatocellular carcinoma (HCC), and DDZ treatment downregulated this gene. In vivo experiments show that DDZ significantly reduced the tumor volume and weight, and inhibited Ki67 expression within tumors. This study shows that DDZ interfered with the survival and migration of hepatocellular carcinoma cells, likely via TPI1 and the gluconeogenesis pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Isoflavonas , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus
6.
Am J Chin Med ; 50(2): 525-552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114907

RESUMO

Atractylodes lancea (Thunb.) DC. is a herb widely used traditionally for the treatment of gastrointestinal diseases such as gastric ulcer, spleen deficiency, and diarrhea. In China, people fry raw A. lancea (SCZ) together with wheat bran to make bran-fried A. lancea (FCZ). Ancient Chinese texts have documented that FCZ can enhance the function of regulating the intestines and stomach. Nevertheless, the effect and mechanism of SCZ and FCZ on ulcerative colitis (UC) are still unclear. The aim of this study was to compare the therapeutic effects of SCZ and FCZ and their mechanisms on dextran sulfate sodium (DSS)-induced UC in mice. The chemical constituents of SCZ and FCZ were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with six reference compounds. The effects of SCZ and FCZ were investigated based on their effects on weight loss, disease activity index (DAI) score, colon length shortening, goblet cell loss, and pathological changes using the colons from a mouse model of DSS-induced UC. The effects of SCZ and FCZ on levels of the inflammatory cytokines (tumor necrosis factor-[Formula: see text], interleukin-6, interleukin-1[Formula: see text], mucoprotein (MUC2), tight protein (ZO-1, occludin), and the activation of macrophages were determined using immunohistochemistry (IHC) and immunofluorescence (IF). 16s RNA sequencing technology was used to detect the composition of the intestinal flora in each group. Nontargeted metabonomics was used to detect the serum metabolite levels of mice in each group. Pearson analysis was used to determine the correlation between the intestinal flora, metabolites, and pathological indices. Reverse transcription-polymerase chain reaction was used to detect the genes of different metabolite-related enzymes. A pseudogerm free (PGF) mouse model was used to verify whether the effect of SCZ and FCZ in UC depends on the regulation of intestinal flora. SCZ and FCZ could inhibit weight loss and decrease the DAI score, colon length shortening, goblet cell loss, and the extent of pathological changes in the colons of mice with DSS-induced colitis. Moreover, SCZ and FCZ inhibited the decrease in MUC2, ZO-1, occludin, production of pro-inflammatory factors, and activation of pro-inflammatory macrophages in colonic tissue. The effect of FCZ was better than that of SCZ. SCZ and FCZ not only inhibited the abundance of harmful bacteria and increased the abundance of beneficial bacteria, but also regulated the metabolism of disease-related metabolites such as amino acid and cholesterol metabolism. Both preparations inhibited the gene expression (Slc6A7, PRODH, Sdsl, HMGCR, SREBP-2) of different metabolite-related enzymes. In the PGF mouse model, the above effects were not observed. Rhizoma Atractylodes was effective in alleviating DSS-induced UC in mice, and FCZ was found to be superior to SCZ. The mechanism of action of FCZ and SCZ is mainly related to the regulation of intestinal flora and their associated metabolites.


Assuntos
Atractylodes , Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Animais , Atractylodes/química , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Espectrometria de Massas em Tandem
7.
Food Funct ; 12(23): 11808-11818, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34766179

RESUMO

Cardamonin (CDM) is a natural chalcone with strong anti-inflammatory properties. Inflammation-induced osteogenic changes in valve interstitial cells (VICs) play crucial roles in the development of calcific aortic valve disease (CAVD), a degenerative disease characterized by degeneration, thickening, fibrosis, and calcification of the heart valve tissues. To investigate the anti-osteogenic differentiation role of CDM in human valve interstitial cells (hVICs), which consequently reverses the calcification of the aortic valve, human VICs were exposed to osteogenic induction medium (OM) with CDM for further cell viability, osteogenic gene and protein expression analyses, and anti-calcification testing. mRNA sequencing was utilized to analyze the differentially expressed genes (DEGs) and related signaling pathways as potential molecular targets involved in CDM's anti-calcification activity. Human aortic valve leaflet ex vivo calcific cultures were used to investigate the CDM inhibition of osteogenic differentiation of hVICs at the tissue level. ApoE-/- mice fed with a high-fat (HF) diet were used to evaluate the effect of CDM on aortic valve calcification. No significant CDM cytotoxicity was seen in the hVICs at 10 µM. The addition of CDM to OM prevented calcified nodule accumulation, and a decrease in the gene/protein expression levels of BMP2, RUNX2, SPP1, TNF-α, and COL1A2 was observed. Venn diagram analysis of the DEGs identified 666 common DEGs and highlighted the NOD-like receptor signaling pathway (ko04621) as an anti-calcification target of CDM. CDM also repressed the activation of p-AKT, p-ERK1/2, and p-IκBα, and prevented the OM-induced nuclear transcription of NF-κB p65. In the in vitro and ex vivo calcific conditional culture experiments, CDM exhibited anti-inflammatory and anti-calcification effects by suppressing the activation of the NLRP3 inflammasome and downregulating IL-1ß expression. In vivo, CDM ameliorated aortic valve calcification by interfering with NLRP3 expression. Our study demonstrated that CDM inhibited the phenotypical calcific transformation of hVICs by mediating the inactivation of the NF-κB/NLRP3 inflammasome. Therefore, it is considered to be a promising natural compound for use in preventing the progression of heart valve calcification disease.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Diferenciação Celular/efeitos dos fármacos , Chalconas/farmacologia , Inflamassomos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA