Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Brain Res ; 1840: 149031, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823507

RESUMO

BACKGROUND: Prior research has shown that granulin precursor (GRN, also termed PGRN) is closely linked to aphasia. However, there has been little research on the mechanism of action of GRN in post-stroke aphasia (PSA). METHODS: In this study, RT-qPCR was used to identify variations in gene expression, while RNA sequencing (RNA-seq) was utilized to acquire transcriptional profiles. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were employed for bioinformatics analysis. RESULTS: GRN was considerably more active in PSA subjects. After silencing the GRN, 197 transcripts had differential expression, and 237 alternative splicing events (ASEs) were substantially affected. The analysis of differentially expressed genes (DEGs) using GO and KEGG approaches showed that these genes have various molecular functions and are significantly enriched in metabolic signaling pathways. Regarding Alternative Splicing (AS), the GO and KEGG analyses revealed numerous functional genes involved in transcription and metabolism. CONCLUSIONS: The knockdown of GRN has been shown to be associated with alterations in transcription, metabolism, and ASEs, potentially impacting transcriptional and metabolic pathways through its involvement in AS. Furthermore, GRN knockdown is associated with nervous system disease-related gene transcription and AS processes, as well as its involvement in G protein-coupled receptor (GPCR) and wingless/integrated (Wnt) signaling pathways, which impact the initiation and resolution of PSA.


Assuntos
Processamento Alternativo , Afasia , Progranulinas , Progranulinas/genética , Processamento Alternativo/genética , Humanos , Animais , Ratos , Afasia/genética , Afasia/metabolismo , Células PC12 , Técnicas de Silenciamento de Genes , Masculino , Acidente Vascular Cerebral/genética
2.
Discov Oncol ; 15(1): 56, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430429

RESUMO

BACKGROUND: T cell exhaustion (TEX) signifies a condition of T cell disorder which implicate the therapeutic benefits and prognostic significance in patients with cancer. However, its role in the Head and Neck Squamous Carcinoma (HNSCC) remains incompletely understood. METHODS: The detailed data of HNSCC samples were obtained from The Cancer Genome Atlas (TCGA) database and two Gene Expression Omnibus (GEO) datasets. We computed the expression scores of four TEX-related pathways and detected gene modules closely linked to these pathways, indicating prognostic significance. Following this, regression analyses were performed to select eight genes for the development of a predictive signature. The predictive capacity of this signature was evaluated. Additionally, we examined the relationships between TEX-related signature risk scores and the effectiveness of immunotherapy as well as drug sensitivity. RESULTS: A novel prognostic model, comprising eight TEX-related genes, was established for patients with HNSCC. The prognostic value was further confirmed using additional GEO datasets: GSE65858 and GSE27020. This signature enables the stratification of patients into high- and low- risk groups, each showing distinct survival outcomes and responsiveness to immunotherapy. The low-risk group demonstrated improved prognosis and enhanced efficacy of immunotherapy. In addition, AZD6482, TAF1, Ribociclib, LGK974, PF4708671 and other drugs showed increased sensitivity in the high-risk group based on drug sensitivity values, offering tailored therapeutic recommendations for individuals with various risks profiles. CONCLUSION: In conclusion, we developed a novel T cell exhaustion-associated signature, which holds considerable predictive value for both the prognosis of patients with HNSCC and the effectiveness of tumor immunotherapy.

3.
Exp Ther Med ; 27(5): 199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38544554

RESUMO

Diffuse cystic lung diseases (DCLDs) are a group of heterogeneous lung diseases that are characterized by inflated spaces or cysts within the lung parenchyma. They also exhibit similar imaging characteristics and clinical manifestations compared with those of cystic lesions, such as pulmonary cavities, emphysema, bronchiectasis and honeycomb lung. The most common DCLDs encountered in the clinic include lymphangioleiomyomatosis, Birt-Hogg-Dubé syndrome, Langerhans cell histiocytosis and lymphocytic interstitial pneumonia. In particular, accurate diagnosis of DCLDs in terms of the different lesions found is important, because their clinical courses, prognoses and treatment strategies vary widely. However, because DCLDs usually have overlapping clinical presentations, diagnosis typically requires a combination of clinical considerations that take into account characteristics of the cyst, its distribution, organ of origin and background parenchymal findings. The present report documents the case of a 73-year-old man diagnosed with desquamative interstitial pneumonia (DIP). The patient was admitted to the hospital due to chest tightness, shortness of breath and intermittent fever. The patient had been a smoker for >60 years and had stopped smoking for 6 months before being admitted. A transbronchial lung biopsy, bronchoscopy and alveolar lavage cytopathogen culture were performed to confirm the diagnosis of desquamative interstitial pneumonia (DIP). The patient was treated with hormonal therapy and advised to abstain from smoking. The diagnosis of DIP in comparison with other DCLDs was summarized for the purpose of providing a clinical basis for the accurate clinical diagnosis of DIP and the development of evidence-based practice guidelines.

4.
World J Diabetes ; 15(2): 287-304, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38464379

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is often accompanied by impaired glucose utilization in the brain, leading to oxidative stress, neuronal cell injury and infla-mmation. Previous studies have shown that duodenal jejunal bypass (DJB) surgery significantly improves brain glucose metabolism in T2DM rats, the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear. AIM: To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats. METHODS: A T2DM rat model was induced via a high-glucose and high-fat diet, combined with a low-dose streptozotocin injection. T2DM rats were divided into DJB operation and Sham operation groups. DJB surgical intervention was carried out on T2DM rats. The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis. Proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry, quantitative real-time PCR, Western blotting, and immunofluorescence. RESULTS: Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery, compared to the T2DM-Sham groups of rats. Oxidative stress-related proteins (glucagon-like peptide 1 receptor, Nrf2, and HO-1) were significantly increased (P < 0.05) in the hypothalamus of rats with T2DM after DJB surgery. DJB surgery significantly reduced (P < 0.05) hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin (IL)-1ß and IL-6. DJB surgery significantly reduced (P < 0.05) the expression of factors related to neuronal injury (glial fibrillary acidic protein and Caspase-3) in the hypothalamus of T2DM rats and upregulated (P < 0.05) the expression of neuroprotective factors (C-fos, Ki67, Bcl-2, and BDNF), thereby reducing hypothalamic injury in T2DM rats. CONCLUSION: DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.

5.
Genet Test Mol Biomarkers ; 27(12): 393-405, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156905

RESUMO

Background: There is increasing evidence that abnormal expression of microRNAs is involved in the occurrence and progression of tumors. In previous experiments, we found that the content of hsa-miR-1301-3p in tumor tissues of patients with nonsmall cell lung cancer (NSCLC) showed an obvious upward trend compared with that in normal tissues. We performed a detailed study on the impact and underlying mechanism of hsa-miR-1301-3p in NSCLC cells. Methods: The impact of hsa-miR-1301-3p on NSCLC cell proliferation, apoptosis, migration, and invasion was examined using colony formation, flow cytometry, modified Boyden chamber, and wound healing assays. Different doses of radiation were applied to NSCLC cells to investigate their sensitivity to radiotherapy. The potential target gene of hsa-miR-1301-3p was determined by dual-luciferase reporter assay and immunoblotting. Result: hsa-miR-1301-3p was upregulated in NSCLC tissues and cells. hsa-miR-1301-3p effectively promoted the rapid proliferation, migration, and invasion of NSCLC cells, while inhibiting apoptosis. It also induced radioresistance in NSCLC cells. hsa-miR-1301-3p targeted the homeodomain-only protein homeobox (HOPX) mRNA 3' untranslated region and inhibited its transcription in NSCLC cells. Exogenous HOPX overexpression antagonized the mechanism by which hsa-miR-1301-3p regulates NSCLC cell proliferation, metastasis, and apoptosis. Conclusions: hsa-miR-1301-3p plays an oncogenic role in the occurrence and development of NSCLC. By targeting HOPX, hsa-miR-1301-3p can not only promote the proliferation and metastasis of NSCLC cells, but also alleviate apoptosis and reduce radiosensitivity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Tolerância a Radiação/genética
6.
Inorg Chem ; 62(12): 4990-4998, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36921355

RESUMO

Photochromic viologen-based materials have emerged as one of the most promising candidates for the development of X-ray light detection applications, including medical diagnosis and treatment, environmental radiation inspection, and industrial crack detection. However, the design and construction of low-dose X-ray-sensitive complexes remains an immense challenge, especially for the in-depth dissection of their response mechanisms. Herein, by using N,N'-4,4'-bipyridiniodipropionate (CV) as functional sensitive structural units and cadmium as heavy atoms, two cadmium-viologen complexes with one-dimensional chained structures, namely, [Cd2Cl4(CV)(H2O)2]n (1) and [CdBr2(CV)]n (2), have been constructed, which exhibit a remarkable and selective photochromic response to low-dose X-ray radiation detection. Compound 1 is visually sensitive to both X-ray and UV light due to the more accessible photoinduced electron transfer (ET) pathways, while compound 2 only shows a slight color-changing process in response to UV light, in conformity with UV-vis absorbance analyses and kinetic studies. Surprisingly, compound 2 has longer ET pathways than 1, but not in response to high-energy X-ray light, seeming to contradict the previous phenomena. On further analysis, the key point in achieving X-ray-sensitive behavior should be a good balance among the electron donor-acceptor distance, intermolecular interaction, and X-ray absorbing capacity, as verified by density functional theory (DFT) and X-ray absorption strength calculations, X-ray photoelectron spectra, electron paramagnetic resonance measurements, and independent gradient model analysis. In particular, compound 1 is unprecedentedly sensitive to soft X-ray radiation, accompanied by an X-ray detection limit of as low as 2.91 Gy. These findings push forward the further development of low-dose X-ray sensing materials.

7.
Plant Sci ; 318: 111208, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351298

RESUMO

Boron (B) deficiency and aluminum (Al) toxicity are two major constraints on plants grown in acidic soils. B supply mitigates Al toxicity; however, the underlying mechanisms of this process remain elusive. In this work, Pisum sativum plants were used to address this issue. In the absence of pH buffers, B supply had a better mitigation effect on Al-induced root inhibition at pH 4.0 than pH 4.8. However, in MES buffered solution, mitigating effects of B on Al-induced root inhibition were more pronounced at pH 4.8, indicating a strong pH dependency of this process. Quantification of pH-dependent accumulation of Al in various root zones, modification of root pH by an exogenous addition of rapid alkalization factor (RALF), and measuring changes in the rhizosphere pH by fluorescent dyes have revealed operation of two concurrent mechanisms to explain alleviation of the inhibition of root elongation induced by Al toxicity by boron: (1) via enhancing rhizosphere pH under strong acidic stress (pH4.0), and (2) via stabilizing of cell wall by cross-linking with RGII at relatively higher pH (4.8). These findings provide scientific basis and support for the application of B fertilizers in the regions with inherited soil acidity.


Assuntos
Alumínio , Boro , Alumínio/toxicidade , Boro/toxicidade , Concentração de Íons de Hidrogênio , Pisum sativum , Raízes de Plantas/fisiologia
9.
J Pharm Biomed Anal ; 210: 114542, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34979491

RESUMO

Solasodine, a major ingredient in Solanaceae family, has various biological functions such as inducing neurogenesis, anticonvulsant and anti-tumor. Its risk assessment has also drawn public attention. However, little is known about its oral bioavailability and metabolic process. In this study, an liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of solasodine in mice dried blood spot (DBS) samples. To block nonspecific adsorption, DBS samples were pretreated with bovine serum albumin (BSA) and then extracted with ethyl acetate. This method was applied to a pharmacokinetic and bioavailability study of solasodine. The absolute bioavailability was only 1.28%. Thereafter, its metabolites in mice were characterized using an ultra-performance liquid chromatography Q-Exactive high-resolution mass spectrometer (UHPLC-QE-HRMS). Several isomeric metabolites were well separated and differentiated using their retention time, fragmentation pathways and correspondingly fragmentation rules of solasodine. As a result, 21 metabolites were characterized including 16 phase I and 5 phase II metabolites. The proposed metabolic pathways showed that solasodine mainly experienced oxidation, dehydration, dehydrogenation and sulfation. These results could help us to better understand the efficacy and safety of solasodine.


Assuntos
Teste em Amostras de Sangue Seco , Espectrometria de Massas em Tandem , Administração Oral , Animais , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Camundongos , Alcaloides de Solanáceas
10.
Obes Surg ; 32(4): 1119-1129, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080701

RESUMO

BACKGROUND: Although gastric surgery can significantly improve blood glucose homeostasis in type 2 diabetes mellitus (T2DM), its mechanism remains unclear. This study evaluated the role of intestinal glucose sensing, glucose transport, and metabolism in the alimentary limb (A limb) of T2DM rats after duodenal jejunal bypass (DJB) surgery. METHODS: A T2DM rat model was induced via a high-glucose high-fat diet and low-dose streptozotocin injection. The diabetic rats were divided into two groups: the DJB surgery (T2DM-DJB) group and the sham surgery (T2DM-Sham) group. Wistar rats were used as wild-type control (Control). Small animal PET was used to assess the change in glucose metabolic status in the intestine. The intestinal villi height and the number of EECs after DJB were evaluated. The expressions of sweet taste receptors (T1R2/T1R3), glucose transporters (SGLT1/GLUT2), and key enzymes involved in glucose metabolism (HK2, PFK2, PKM2, G6Pase, and PCK1) in the A limb after DJB was detected by Western blot and qRT-PCR. RESULTS: Small animal PET analysis showed the intestinal glucose metabolism increased significantly 6 weeks after DJB surgery. The intestinal villi height and the number of EECs in the A limb 6 weeks after surgery increased significantly in T2DM-DJB rats comparing to T2DM-Sham rats. The mRNA and protein expression of T1R1/T1R3 and SGLT1/GLUT2 were downregulated in DJB-T2DM rats, while enzymes involved in glucose metabolism was upregulated in the A limb in T2DM-DJB rats. CONCLUSION: Proximal intestinal glucose sensing and metabolism play an important role in blood glucose homeostasis by DJB.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Derivação Gástrica , Obesidade Mórbida , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Duodeno/metabolismo , Duodeno/cirurgia , Glucose/metabolismo , Controle Glicêmico , Humanos , Jejuno/metabolismo , Jejuno/cirurgia , Obesidade Mórbida/cirurgia , Ratos , Ratos Wistar
11.
Front Mol Biosci ; 8: 682769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095232

RESUMO

Exosomes show diagnostic and therapeutic promise as carriers of ncRNAs in diseases. LncRNAs in exosomes have been identified as being stable and avoided degradation by nucleolytic enzymes. Although lncRNAs have been confirmed to be important in cancers, no studies for exo-lncRNAs have been reported in LAA stroke. High-throughput sequencing was performed to detect the differential expression profiles of lncRNAs in five paired plasma-derived exosome samples from patients with LAA stroke and controls (matched on vascular risk factors). Exo-lncRNA-associated networks were predicted with a combination of multiple databases. The expression of the selected genes in the networks was confirmed by qRT-PCR in a validation set (LAA vs. controls = 30:30). Furthermore, ROC analysis was used to evaluate the diagnostic performance of the lncRNA-related networks. A total of 1,020 differentially expressed lncRNAs were identified in LAA stroke patients. GO and KEGG pathway analyses indicated that their target genes are involved in atherosclerosis-related pathways, including inflammation, cell adhesion, and cell migration. qRT-PCR confirmed that the expression trend of differential expressed genes was consistent with RNA-seq. Furthermore, the AUCs of the lnc_002015-related network and lnc_001350-related network were 0.959 and 0.97, respectively, in LAA stroke. Our study showed the differential expression of lncRNAs in plasma exosomes and presented related diagnostic networks for LAA stroke for the first time. The results suggested that exosomal lncRNA-related networks could be potential diagnostic tools in LAA stroke.

12.
Front Oncol ; 11: 659720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842376

RESUMO

Differentiation therapy with all-trans-retinoic acid (ATRA) in acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia (AML), has been extremely successful in inducing clinical remission in APL patients. However, the differentiation therapy of ATRA-based treatment has not been effective in other subtypes of AML. In this study, we evaluated a small molecule of ent-kaurene diterpenoid, Jiyuan oridonin A (JOA), on the differentiation blockade in AML cells with the mixed lineage leukemia (MLL) gene rearrangements (MLLr) in MV4-11, MOLM-13 and THP-1 cells. We found that JOA could significantly inhibit the proliferation of MOLM-13, MV4-11 and THP-1 cells. Moreover, JOA promoted cell differentiation coupled with cell-cycle exit at G0/G1 and inhibited the colony- forming capacity of these cells. We showed that the anti-proliferative effect of JOA attributed to cell differentiation is most likely through the martens tretinoin response up pathway in the MOLM-13 cell line, and the hematopoietic cell lineage pathway by the inhibition of c-KIT expression and cell adhesion pathway in the THP-1 cell line. Our findings suggest that JOA could be a novel therapeutic agent against human MLLr acute myeloid leukemia.

13.
Front Cell Dev Biol ; 9: 652972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748146

RESUMO

Acute myelogenous leukemia (AML) is characterized by blockage of cell differentiation leading to the accumulation of immature cells, which is the most prevalent form of acute leukemia in adults. It is well known that all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) are the preferred drugs for acute promyelocytic leukemia (APL). However, they can lead to irreversible resistance which may be responsible for clinical failure after complete remission (CR). Moreover, the differentiation therapy of ATRA-based treatment has not been effective against AML with t(8;21) translocation. Here we aimed to identify the differentiation effect of OGP46 on AML cell lines (HL-60, NB4, and Kasumi-1) and explore its possible mechanisms. We found that OGP46 has significant inhibitory activity against these cells by triggering cell differentiation with cell-cycle exit at G1/G0 and inhibited the colony-formation capacity of the AML cells. It was shown that OGP46 induced the differentiation of NB4 cells via the transcriptional misregulation in cancer signaling pathway by PML-RARα depletion, while it was attributed to the hematopoietic cell lineage and phagosome pathway in Kasumi-1 cells, which are all critical pathways in cell differentiation. These results highlight that OGP46 is an active agent not only in the APL cell line NB4 but also in AML-M2 cell lines, especially Kasumi-1 with t(8;21) translocation. Therefore, OGP46 may be a potential compound for surmounting the differentiation blockage in AML.

14.
Mol Ther Oncolytics ; 18: 137-148, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32671189

RESUMO

Chronic myeloid leukemia (CML) is caused by the Philadelphia (Ph+) chromosome carrying the BCR-ABL oncogene, a constitutively active tyrosine kinase. The discovery of imatinib represents a major success story in the treatment against CML. However, mutations in the BCR-ABL kinase domain are a major cause of resistance to imatinib, demonstrating that BCR-ABL remains a critical drug target. Here, we investigate a novel small molecule inhibitor, OGP46, for its inhibitory activity against K562, a panel of murine BaF3 cell lines stably expressing either wild-type BCR-ABL or its mutant forms, including T315I. OGP46 exhibits potent activity against imatinib-resistant BCR-ABL mutations, including T315I. OGP46 induced cell differentiation accompanied by G0/G1 cell-cycle arrest and suppressed the colony formation capacity of cells. Treatment with OGP46 significantly decreased the mRNA and protein expression of BCR-ABL in K562 and BaF3-p210-T315I cells. Mechanistically, the anti-cancer activity of OGP46 induced by cell differentiation is likely through the BCR-ABL/JAK-STAT pathway in native BCR-ABL and mutant BCR-ABL, including T315I, of CML cells. Our findings highlight that OGP46 is active against not only native BCR-ABL but also 11 clinically relevant BCR-ABL mutations, including T315I mutation, which are resistant to imatinib. Thus, OGP46 may be a novel strategy for overcoming imatinib-resistance BCR-ABL mutations, including T315I.

15.
Obes Surg ; 30(1): 279-289, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605365

RESUMO

BACKGROUND: Duodenal-jejunal bypass (DJB) can dramatically improve type 2 diabetes independent of weight loss and food restriction. Increasing evidence has demonstrated that brain insulin signaling plays an important role in the pathophysiology of type 2 diabetes. This study explores whether the antidiabetic effect of DJB is involved in brain insulin signaling activation and brain glucose utilization. METHODS: A diabetic rat model was established by high-fat and high-glucose diet. DJB or sham surgery was performed in diabetic rats. 18F-FDG PET scanning was used to detect glucose uptake in different organs, particularly in the brain. The levels of glucose transporters, glucose utilization-related proteins (HK1 and PFK2), insulin, and insulin signaling pathway-related proteins (InsR, IRS1/2, PI3K, and p-Akt) in the brain tissues were evaluated and analyzed. RESULTS: The results showed that DJB significantly improved basal glycemic parameters and reversed the decreasing glucose uptake in the brains of type 2 diabetic rats. DJB significantly increased not only the expression levels of brain insulin, IRS1/2, PI3K, and p-Akt but also the levels of the glucose utilization enzymes HK1 and PFK2 in the brain. CONCLUSION: These results indicate that enhanced brain insulin signaling transduction and brain glucose utilization play important roles in the antidiabetic effect of DJB.


Assuntos
Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Duodeno/cirurgia , Derivação Gástrica/métodos , Glucose/metabolismo , Insulina/metabolismo , Jejuno/cirurgia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Duodeno/patologia , Resistência à Insulina/fisiologia , Jejuno/patologia , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Resultado do Tratamento , Redução de Peso
16.
Am J Infect Control ; 48(2): 199-203, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31345617

RESUMO

BACKGROUND: Contamination of drugs used in minimally invasive treatment may to lead to infection outbreaks and catastrophic public health events that require prompt detection and control. Our aim was to investigate the outbreak of Burkholderia cepacia infection and its source in a tertiary care, general hospital in Beijing, China. METHODS: We investigated the outbreak of B cepacia infection from January 2017 to March 2018. The investigation included a detailed review of all cases, and field investigations. Environmental and product cultures were performed at the microbiology laboratory in the hospital. Isolates were evaluated for molecular relatedness using pulsed-field gel electrophoresis performed in an independent laboratory. RESULTS: In total, 9 patients were infected from November 2017 to March 2018, and all patients had undergone the following surgeries: transurethral resection of the prostate (n = 4), perineal prostate biopsy (n = 2), transurethral resection of bladder tumors (n = 2), and ureteroscopy (n = 1). B cepacia was isolated from the urine of 9 patients, blood of 2 patients, grilles used for puncturing, and 2 samples in 1 batch of analgesic gels. Pulsed-field gel electrophoresis confirmed that the isolates from the patients and gels were homologous. CONCLUSIONS: Our investigation revealed that the outbreak of B cepacia infection was caused by drug contamination.


Assuntos
Anestésicos Locais , Infecções por Burkholderia/etiologia , Burkholderia cepacia/isolamento & purificação , Contaminação de Medicamentos , Sepse/microbiologia , Infecções Urinárias/microbiologia , Idoso , Infecções por Burkholderia/epidemiologia , China/epidemiologia , Surtos de Doenças , Géis , Humanos , Masculino , Pessoa de Meia-Idade , Centros de Atenção Terciária
17.
J Exp Bot ; 70(21): 6349-6361, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31420662

RESUMO

The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2, which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H+-ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K+ leak from roots; (ii) reduced rates of net Na+ uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na+ concentration in the cytoplasm by excluding Na+ to apoplast and sequestering Na+ in the vacuoles; (iv) a lower rate of H2O2 production and reduced reactive oxygen species-inducible K+ efflux from root epidermis; and (v) better K+ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.


Assuntos
Arabidopsis/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Tolerância ao Sal/fisiologia , Ácido gama-Aminobutírico/metabolismo , Arabidopsis/anatomia & histologia , Biomassa , Sobrevivência Celular , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Íons , Potenciais da Membrana , Mutação/genética , Estresse Oxidativo , Epiderme Vegetal/metabolismo , Raízes de Plantas/citologia , Brotos de Planta/anatomia & histologia , Potássio/metabolismo , Salinidade , Plântula/metabolismo , Sódio/metabolismo , Estresse Fisiológico , Transcrição Gênica
18.
Front Pharmacol ; 10: 646, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333446

RESUMO

Objective: To observe the protective role of hapatopoietin Cn (HPPcn) on acute liver injury. Methods: Six hours after 10 mmol/L CCl4, 150 mmol/L ethanol, or 0.6 mmol/L H2O2 treatment, SMMC7721 human hepatoma cells were incubated with 10, 100, or 200 ng/ml recombinant human HPPCn protein (rhHPPCn) for an additional 24 h. The cell survival rate was analyzed using the CCK-8 assay. The CCl4-induced apoptosis of SMMC7721 cells was detected by flow cytometry. Then, the levels of glutamic oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), malondialdehyde (MDA), lactate dehydrogenase (LDH), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) in SMMC7721 cell lysates and cell culture supernatant were detected. SMMC7721 cells were treated with different concentrations of rhHPPCn (0, 10, and 100 ng/ml). The cell proliferation indexes (BrdU incorporation and PCNA expression) were detected by immunohistochemistry (IHC). An acute liver injury mouse model was established by a one-time intraperitoneal injection of 20% CCl4 at a volume of 5 ml/kg body weight. One hour after CCl4 injection, 1.25 or 2.5 mg rhHPPCn/12 h/kg body weight was injected via the tail vein. The serum levels of GOT and GPT were detected at different time points. Pathological changes in the liver were evaluated. PCNA expression levels were observed by IHC. Results: rhHPPCn increased the survival rate of SMMC7721 cells and inhibited chemical toxicity-induced cell apoptosis. The levels of GOT, GPT, MDA, and LDH in the cell supernatant were significantly reduced, while GSH-PX and SOD were significantly increased after rhHPPCn treatment in the CCl4-treated SMMC7721 cells. BrdU incorporation and PCNA expression increased in a concentration-dependent manner, indicating that rhHPPCn promotes cell proliferation. The results showed that rhHPPCn significantly reduced the serum levels of GOT and GPT in CCl4-induced acute liver injury mice. rhHPPCn alleviated the tissue damage and increased PCNA expression, indicating the promotion of proliferation after acute injury. Conclusion: rhHPPCn protects hepatocytes from chemical toxins by promoting proliferation and inhibiting apoptosis in vivo and in vitro. Our study provides new insights for the clinical treatment of acute liver injury.

19.
Biochem Biophys Res Commun ; 512(4): 902-907, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30929914

RESUMO

Resistance to adjuvant chemotherapy remains therapeutic challenge in nasopharyngeal carcinoma (NPC). In this work, we demonstrate that targeting eukaryotic translation initiation factor 4E (eIF4E) is a potential sensitizing strategy to overcome chemoresistance in NPC. We observe the aberrant activation of eIF4E and translational upregulation of eIF4E-regulated oncogenes in NPC cell after pro-longed exposure of cisplatin. Functional analysis demonstrates that eIF4E depletion effectively inhibits proliferation and induces apoptosis in cisplatin-resistant NPC cells. Consistently, eIF4E knockdown significantly enhances cisplatin efficacy in cisplatin-sensitive cells. We identify eIF4E as a therapeutically actionable targets by showing that ribavirin, an anti-viral drug, phenocopies the effects of eIF4E knockdown in NPC. We further demonstrate that ribavirin acts on chemoresistant NPC cells through suppressing eIF4E activity and oncogenic protein translation. Using two independent NPC xenograft mouse models, we show that ribavirin not only is effective in inhibiting chemoresistant NPC growth but also significantly augments the inhibitory effects of cisplatin efficacy in vivo without causing significant toxicity in mice. Taken together, our work shows an activation of eIF4E-mediated growth and survival mechanisms in response to chemotherapy and suggests that inhibition of eIF4E activity represents an attractive sensitizing strategy for NPC treatment. Our findings also suggest that ribavirin is a useful addition to the treatment armamentarium for NPC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Carcinoma Nasofaríngeo/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Camundongos SCID , Terapia de Alvo Molecular/métodos , Carcinoma Nasofaríngeo/genética , Oncogenes , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas , Ribavirina/administração & dosagem , Ribavirina/farmacologia , Serina/metabolismo
20.
CNS Neurosci Ther ; 25(6): 748-758, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30784219

RESUMO

INTRODUCTION: Dl-3-N-butylphthalide (NBP), a small molecule drug used clinically in the acute phase of ischemic stroke, has been shown to improve functional recovery and promote angiogenesis and collateral vessel circulation after experimental cerebral ischemia. However, the underlying molecular mechanism is unknown. AIMS: To explore the potential molecular mechanism of angiogenesis induced by NBP after cerebral ischemia. RESULTS: NBP treatment attenuated body weight loss, reduced brain infarct volume, and improved neurobehavioral outcomes during focal ischemia compared to the control rats (P < 0.05). NBP increased the number of CD31+ microvessels, the number of CD31+ /BrdU+ proliferating endothelial cells, and the functional vascular density (P < 0.05). Further study demonstrated that NBP also promoted the expression of vascular endothelial growth factor and angiopoietin-1 (P < 0.05), which was accompanied by upregulated sonic hedgehog expression in astrocytes in vivo and in vitro. CONCLUSION: NBP treatment promoted the expression of vascular endothelial growth factor and angiopoietin-1, induced angiogenesis, and improved neurobehavioral recovery. These effects were associated with increased sonic hedgehog expression after NBP treatment. Our results broadened the clinical application of NBP to include the later phase of ischemia.


Assuntos
Indutores da Angiogênese/farmacologia , Benzofuranos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Angiopoietina-1/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteínas Hedgehog , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Distribuição Aleatória , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA