Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 27(5): 199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38544554

RESUMO

Diffuse cystic lung diseases (DCLDs) are a group of heterogeneous lung diseases that are characterized by inflated spaces or cysts within the lung parenchyma. They also exhibit similar imaging characteristics and clinical manifestations compared with those of cystic lesions, such as pulmonary cavities, emphysema, bronchiectasis and honeycomb lung. The most common DCLDs encountered in the clinic include lymphangioleiomyomatosis, Birt-Hogg-Dubé syndrome, Langerhans cell histiocytosis and lymphocytic interstitial pneumonia. In particular, accurate diagnosis of DCLDs in terms of the different lesions found is important, because their clinical courses, prognoses and treatment strategies vary widely. However, because DCLDs usually have overlapping clinical presentations, diagnosis typically requires a combination of clinical considerations that take into account characteristics of the cyst, its distribution, organ of origin and background parenchymal findings. The present report documents the case of a 73-year-old man diagnosed with desquamative interstitial pneumonia (DIP). The patient was admitted to the hospital due to chest tightness, shortness of breath and intermittent fever. The patient had been a smoker for >60 years and had stopped smoking for 6 months before being admitted. A transbronchial lung biopsy, bronchoscopy and alveolar lavage cytopathogen culture were performed to confirm the diagnosis of desquamative interstitial pneumonia (DIP). The patient was treated with hormonal therapy and advised to abstain from smoking. The diagnosis of DIP in comparison with other DCLDs was summarized for the purpose of providing a clinical basis for the accurate clinical diagnosis of DIP and the development of evidence-based practice guidelines.

2.
World J Diabetes ; 15(2): 287-304, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38464379

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is often accompanied by impaired glucose utilization in the brain, leading to oxidative stress, neuronal cell injury and infla-mmation. Previous studies have shown that duodenal jejunal bypass (DJB) surgery significantly improves brain glucose metabolism in T2DM rats, the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear. AIM: To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats. METHODS: A T2DM rat model was induced via a high-glucose and high-fat diet, combined with a low-dose streptozotocin injection. T2DM rats were divided into DJB operation and Sham operation groups. DJB surgical intervention was carried out on T2DM rats. The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis. Proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry, quantitative real-time PCR, Western blotting, and immunofluorescence. RESULTS: Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery, compared to the T2DM-Sham groups of rats. Oxidative stress-related proteins (glucagon-like peptide 1 receptor, Nrf2, and HO-1) were significantly increased (P < 0.05) in the hypothalamus of rats with T2DM after DJB surgery. DJB surgery significantly reduced (P < 0.05) hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin (IL)-1ß and IL-6. DJB surgery significantly reduced (P < 0.05) the expression of factors related to neuronal injury (glial fibrillary acidic protein and Caspase-3) in the hypothalamus of T2DM rats and upregulated (P < 0.05) the expression of neuroprotective factors (C-fos, Ki67, Bcl-2, and BDNF), thereby reducing hypothalamic injury in T2DM rats. CONCLUSION: DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.

3.
Obes Surg ; 32(4): 1119-1129, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080701

RESUMO

BACKGROUND: Although gastric surgery can significantly improve blood glucose homeostasis in type 2 diabetes mellitus (T2DM), its mechanism remains unclear. This study evaluated the role of intestinal glucose sensing, glucose transport, and metabolism in the alimentary limb (A limb) of T2DM rats after duodenal jejunal bypass (DJB) surgery. METHODS: A T2DM rat model was induced via a high-glucose high-fat diet and low-dose streptozotocin injection. The diabetic rats were divided into two groups: the DJB surgery (T2DM-DJB) group and the sham surgery (T2DM-Sham) group. Wistar rats were used as wild-type control (Control). Small animal PET was used to assess the change in glucose metabolic status in the intestine. The intestinal villi height and the number of EECs after DJB were evaluated. The expressions of sweet taste receptors (T1R2/T1R3), glucose transporters (SGLT1/GLUT2), and key enzymes involved in glucose metabolism (HK2, PFK2, PKM2, G6Pase, and PCK1) in the A limb after DJB was detected by Western blot and qRT-PCR. RESULTS: Small animal PET analysis showed the intestinal glucose metabolism increased significantly 6 weeks after DJB surgery. The intestinal villi height and the number of EECs in the A limb 6 weeks after surgery increased significantly in T2DM-DJB rats comparing to T2DM-Sham rats. The mRNA and protein expression of T1R1/T1R3 and SGLT1/GLUT2 were downregulated in DJB-T2DM rats, while enzymes involved in glucose metabolism was upregulated in the A limb in T2DM-DJB rats. CONCLUSION: Proximal intestinal glucose sensing and metabolism play an important role in blood glucose homeostasis by DJB.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Derivação Gástrica , Obesidade Mórbida , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Duodeno/metabolismo , Duodeno/cirurgia , Glucose/metabolismo , Controle Glicêmico , Humanos , Jejuno/metabolismo , Jejuno/cirurgia , Obesidade Mórbida/cirurgia , Ratos , Ratos Wistar
4.
Obes Surg ; 30(1): 279-289, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605365

RESUMO

BACKGROUND: Duodenal-jejunal bypass (DJB) can dramatically improve type 2 diabetes independent of weight loss and food restriction. Increasing evidence has demonstrated that brain insulin signaling plays an important role in the pathophysiology of type 2 diabetes. This study explores whether the antidiabetic effect of DJB is involved in brain insulin signaling activation and brain glucose utilization. METHODS: A diabetic rat model was established by high-fat and high-glucose diet. DJB or sham surgery was performed in diabetic rats. 18F-FDG PET scanning was used to detect glucose uptake in different organs, particularly in the brain. The levels of glucose transporters, glucose utilization-related proteins (HK1 and PFK2), insulin, and insulin signaling pathway-related proteins (InsR, IRS1/2, PI3K, and p-Akt) in the brain tissues were evaluated and analyzed. RESULTS: The results showed that DJB significantly improved basal glycemic parameters and reversed the decreasing glucose uptake in the brains of type 2 diabetic rats. DJB significantly increased not only the expression levels of brain insulin, IRS1/2, PI3K, and p-Akt but also the levels of the glucose utilization enzymes HK1 and PFK2 in the brain. CONCLUSION: These results indicate that enhanced brain insulin signaling transduction and brain glucose utilization play important roles in the antidiabetic effect of DJB.


Assuntos
Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Duodeno/cirurgia , Derivação Gástrica/métodos , Glucose/metabolismo , Insulina/metabolismo , Jejuno/cirurgia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Duodeno/patologia , Resistência à Insulina/fisiologia , Jejuno/patologia , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Resultado do Tratamento , Redução de Peso
5.
Front Pharmacol ; 10: 646, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333446

RESUMO

Objective: To observe the protective role of hapatopoietin Cn (HPPcn) on acute liver injury. Methods: Six hours after 10 mmol/L CCl4, 150 mmol/L ethanol, or 0.6 mmol/L H2O2 treatment, SMMC7721 human hepatoma cells were incubated with 10, 100, or 200 ng/ml recombinant human HPPCn protein (rhHPPCn) for an additional 24 h. The cell survival rate was analyzed using the CCK-8 assay. The CCl4-induced apoptosis of SMMC7721 cells was detected by flow cytometry. Then, the levels of glutamic oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), malondialdehyde (MDA), lactate dehydrogenase (LDH), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) in SMMC7721 cell lysates and cell culture supernatant were detected. SMMC7721 cells were treated with different concentrations of rhHPPCn (0, 10, and 100 ng/ml). The cell proliferation indexes (BrdU incorporation and PCNA expression) were detected by immunohistochemistry (IHC). An acute liver injury mouse model was established by a one-time intraperitoneal injection of 20% CCl4 at a volume of 5 ml/kg body weight. One hour after CCl4 injection, 1.25 or 2.5 mg rhHPPCn/12 h/kg body weight was injected via the tail vein. The serum levels of GOT and GPT were detected at different time points. Pathological changes in the liver were evaluated. PCNA expression levels were observed by IHC. Results: rhHPPCn increased the survival rate of SMMC7721 cells and inhibited chemical toxicity-induced cell apoptosis. The levels of GOT, GPT, MDA, and LDH in the cell supernatant were significantly reduced, while GSH-PX and SOD were significantly increased after rhHPPCn treatment in the CCl4-treated SMMC7721 cells. BrdU incorporation and PCNA expression increased in a concentration-dependent manner, indicating that rhHPPCn promotes cell proliferation. The results showed that rhHPPCn significantly reduced the serum levels of GOT and GPT in CCl4-induced acute liver injury mice. rhHPPCn alleviated the tissue damage and increased PCNA expression, indicating the promotion of proliferation after acute injury. Conclusion: rhHPPCn protects hepatocytes from chemical toxins by promoting proliferation and inhibiting apoptosis in vivo and in vitro. Our study provides new insights for the clinical treatment of acute liver injury.

6.
Biomed Pharmacother ; 97: 1131-1137, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29136951

RESUMO

Myricetin is a flavonoids compound extracted from edible myrica rubra. We aimed to evaluate the efficacy of Myricetin on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Myricetin was administrated by gavage for 4 consecutive weeks. Mice were sacrificed and the number of colonic polyps was counted. Myricetin significantly inhibited AOM/DSS-induced colitis and colorectal tumorigenesis. Myricetin prevented the incidence of colorectal tumorigenesis and reduced the size of colorectal polyps. Histopathologic analysis showed that Myricetin could attenuate the degree of colonic inflammation and colorectal tumorigenesis. Further analysis showed that Myricetin strongly reduced the levels of inflammatory factors TNF-α, IL-1ß, IL-6, NF-κB, p-NF-κB, cyclooxygenase-2 (COX-2), PCNA and Cyclin D1 in the colonic tissues as analyzed by the assays of immunohistochemical staining, Western blotting and Q-RT-PCR. Our results demonstrated that Myricetin possesses the biological activities of chemoprevention colonic chronic inflammation and inflammation-driven tumorigenesis. We suggest that Myricetin could be developed as a promising chemopreventive drug for reducing the risk of colorectal cancer.


Assuntos
Colite/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Flavonoides/farmacologia , Inflamação/tratamento farmacológico , Animais , Anticarcinógenos/farmacologia , Western Blotting , Doença Crônica , Colite/complicações , Pólipos do Colo/prevenção & controle , Modelos Animais de Doenças , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Tumour Biol ; 37(4): 5645-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26581907

RESUMO

The level of microRNA-93 (miR-93) in tumors has been recently reported to be negatively correlated with survival of lung cancer patients. Considering that the most devastating aspect of lung cancer is metastasis, which can be promoted by transforming growth factor-ß (TGF-ß)-induced epithelial-to-mesenchymal transition (EMT), we sought to determine whether miR-93 is involved in this process. Here, we report that a previously unidentified target of miR-93, neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L), is able to mediate TGF-ß-mediated EMT in lung cancer cells. miR-93 binds directly to the 3'-UTR of the NEDD4L messenger RNA (mRNA), leading to a downregulation of NEDD4L expression at the protein level. We next demonstrated that the downregulation of NEDD4L enhanced, while overexpression of NEDD4L reduced TGF-ß signaling, reflected by increased phosphorylation of SMAD2 in the lung cancer cell line after TGF-ß treatment. Furthermore, overexpression of miR-93 in lung cancer cells promoted TGF-ß-induced EMT through downregulation of NEDD4L. The analysis of publicly available gene expression array datasets indicates that low NEDD4L expression correlates with poor outcomes among patients with lung cancer, further supporting the oncogenic role of miR-93 in lung tumorigenesis and metastasis.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/biossíntese , Ubiquitina-Proteína Ligases Nedd4 , Metástase Neoplásica , Estadiamento de Neoplasias , Proteína Smad2/biossíntese , Ubiquitina-Proteína Ligases/biossíntese
8.
Neurol Sci ; 36(11): 2027-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26169757

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid that activates at least five known G-protein-coupled receptors (GPCRs): LPA1-LPA5. The nervous system is a major locus for LPA1 expression. LPA has been shown to regulate neuronal proliferation, migration, and differentiation during central nervous system development as well as neuronal survival. Furthermore, deficient LPA signaling has been implicated in several neurological disorders including neuropathic pain and schizophrenia. Parkinson's disease (PD) is a neurodegenerative movement disorder that results from the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The specific molecular pathways that lead to DA neuron degeneration, however, are poorly understood. The influence of LPA in the differentiation of mesenchymal stem cells (MSCs) into DA neurons in vitro and LPA1 expression in a 6-hydroxydopamine (6-OHDA) lesion model of PD in vivo were examined in the present study. LPA induced neuronal differentiation in 80.2 % of the MSC population. These MSCs developed characteristic neuronal morphology and expressed the neuronal marker, neuron-specific enolase (NSE), while expression of the glial marker, glial fibrillary acidic protein (GFAP), was absent. Moreover, 27.6 % of differentiated MSCs were positive for tyrosine hydroxylase (TH), a marker for DA neurons. In the 6-OHDA PD rat model, LPA1 expression in the substantia nigra was significantly reduced compared to control. These results suggest LPA signaling via activation of LPA1 may be necessary for DA neuron development and survival. Furthermore, reduced LPA/LPA1 signaling may be involved in DA neuron degeneration thus contributing to the pathogenesis of PD.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Lisofosfolipídeos/metabolismo , Neurogênese/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Fármacos do Sistema Nervoso Central/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Lisofosfolipídeos/administração & dosagem , Masculino , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/fisiologia , Plexo Mientérico/metabolismo , Neurogênese/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/patologia , Fosfopiruvato Hidratase/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Substância Negra/patologia , Substância Negra/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Int J Pharm ; 474(1-2): 112-22, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25138252

RESUMO

Combination of more than one therapeutic strategy is the standard treatment in clinics. Co-delivery of chemotherapeutic drug and small interfering RNA (siRNA) within a nanoparticulate system will suppress the tumor growth. In the present study, docetaxel (DTX) and BCL-2 siRNA was incorporated in a PEGylated liposome to systemically deliver in a lung cancer model (A549). The resulting nanoparticle (lipo-DTX/siRNA) was stable and exhibited a sustained release profile. The co-delivery of therapeutic moieties inhibited the cell proliferation (A549 and H226) in a time-dependent manner. Moreover, the co-delivery system of DTX and siRNA exhibited a remarkable apoptosis of cancer cells with elevated levels of caspase 3/7 activity (apoptosis markers). Cell cycle analysis further showed remarkable increase in sub-G0/G1 phase, indicating increasing hypodiploids or apoptotic cells. Pharmacokinetic study showed a long circulating profile for DTX from lipo-DTX/siRNA system facilitating the passive tumor targeting. In vivo antitumor study on A549 cell bearing xenograft tumor model exhibited a remarkable tumor regression profile for lipo-DTX/siRNA with 100% survival rate. The favorable tumor inhibition response was attributed to the synergistic effect of DTX potency and MDR reversing ability of BCL-2 siRNA in the tumor mass. Overall, experimental results suggest that co-delivery of DTX and siRNA could be promising approach in the treatment of lung cancers.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Taxoides/administração & dosagem , Taxoides/uso terapêutico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Lipossomos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Taxoides/farmacocinética , Taxoides/farmacologia
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 10(3): 265-7, 2002 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-12513801

RESUMO

It is necessary that the two signals are required in T cells activation. The first signal is specific, which T cell receptor could recognize and bind MHC molecule by antigen-presenting cells. Another one is nonspecific, which results from CD28/B7/CTLA4 molecules on T cells and antigen-presenting cells. The both of signals regulate function of T cells such as the activation, proliferation and secreting cytokines. CTLA4 showed the up-regulation in CD28/B7 costimulatory pathway as a negative signal. The immunosuppression could occur by blocking CD28/B7 pathway. It provided useful method for immunotherapy in the autoimmune diseases and graft-versus-host disease. But then, the activation of CD28/B7 could be valuable for the immune system recognizing and eliminating tumor cells.


Assuntos
Antígeno B7-1/imunologia , Antígenos CD28/imunologia , Imunoconjugados , Transdução de Sinais/imunologia , Abatacepte , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD , Antígenos de Diferenciação/imunologia , Antígeno CTLA-4 , Humanos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA