Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Struct Mol Biol ; 31(3): 498-512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182927

RESUMO

Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Decitabina/farmacologia , Decitabina/uso terapêutico , Decitabina/metabolismo , Epigenoma , Metilação de DNA/genética , Cromatina , Epigênese Genética , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Clin Transl Med ; 12(10): e1030, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36178085

RESUMO

BACKGROUND: Prostate cancer is a clinically heterogeneous disease with a subset of patients rapidly progressing to lethal-metastatic prostate cancer. Current clinicopathological measures are imperfect predictors of disease progression. Epigenetic changes are amongst the earliest molecular changes in tumourigenesis. To find new prognostic biomarkers to enable earlier intervention and improved outcomes, we performed methylome sequencing of DNA from patients with localised prostate cancer and long-term clinical follow-up. METHODS: We used whole-genome bisulphite sequencing (WGBS) to comprehensively map and compare DNA methylation of radical prostatectomy tissue between patients with lethal disease (n = 7) and non-lethal (n = 8) disease (median follow-up 19.5 years). Validation of differentially methylated regions (DMRs) was performed in an independent cohort (n = 185, median follow-up 15 years) using targeted multiplex bisulphite sequencing of candidate regions. Survival was assessed via univariable and multivariable analyses including clinicopathological measures (log-rank and Cox regression models). RESULTS: WGBS data analysis identified cancer-specific methylation patterns including CpG island hypermethylation, and hypomethylation of repetitive elements, with increasing disease risk. We identified 1420 DMRs associated with prostate cancer-specific mortality (PCSM), which showed enrichment for gene sets downregulated in prostate cancer and de novo methylated in cancer. Through comparison with public prostate cancer datasets, we refined the DMRs to develop an 18-gene prognostic panel. Applying this panel to an independent cohort, we found significant associations between PCSM and hypermethylation at EPHB3, PARP6, TBX1, MARCH6 and a regulatory element within CACNA2D4. Strikingly in a multivariable model, inclusion of CACNA2D4 methylation was a better predictor of PCSM versus grade alone (Harrell's C-index: 0.779 vs. 0.684). CONCLUSIONS: Our study provides detailed methylome maps of non-lethal and lethal prostate cancer and identifies novel genic regions that distinguish these patient groups. Inclusion of our DNA methylation biomarkers with existing clinicopathological measures improves prognostic models of prostate cancer mortality, and holds promise for clinical application.


Assuntos
Epigenoma , Neoplasias da Próstata , ADP Ribose Transferases/genética , DNA , Epigênese Genética/genética , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Sulfitos
3.
Ther Adv Med Oncol ; 14: 17588359221092486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465297

RESUMO

Objective: To determine the efficacy and safety of intermittent docetaxel chemotherapy guided by circulating methylated glutathione S-transferase Pi-1 (mGSTP1) in men with metastatic castration-resistant prostate cancer (CRPC). Patients and Methods: GUIDE (NCT04918810) is a randomised, two-arm, non-comparative phase-2 trial recruiting 120 patients at six Australian centres. Patients with Prostate Cancer Working Group-3 defined metastatic CRPC who are commencing docetaxel 75 mg/m2 q3w will be pre-screened for detectable mGSTP1 at baseline ± following two cycles of treatment. Those with detectable plasma mGSTP1 at baseline that becomes undetectable after two cycles of chemotherapy will be eligible for GUIDE. Prior to Cycle 4 of docetaxel, these patients are randomised 2:1 to one of two treatment arms: Arm A (cease docetaxel and reinstitute if mGSTP1 becomes detectable) or Arm B (continue docetaxel 75 mg/m2 q3w in accordance with clinician's usual practice). The primary endpoint is radiographic progression-free survival. Secondary endpoints include time on treatment holidays, safety, patient-reported outcomes, overall survival, health resource use, and cost associated with treatment. Enrolment commenced November 2021. Results and Conclusion: The results of this trial will generate data on the clinical utility of mGSTP1 as a novel biomarker to guide treatment de-escalation in metastatic CRPC.

4.
Biomed Pharmacother ; 136: 111280, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33485063

RESUMO

Ginseng has been widely applied in clinical practice, but the cultivation age cannot be ignored as it influences the quality of ginseng and its products. In this work, different cultivation ages of fresh ginseng (FG) from four to seven years were analysed by UPLC-Q-TOF-MS/MS. Principal component analysis and supervised orthogonal partial least squared discrimination analysis, which belong to the normal method of multivariate statistical analysis, were applied to discover the characteristic components of FG at different cultivation ages. The components of new type of red ginseng (NRG) derived from FG at different cultivation ages were compared by HPLC analysis. The pharmacological anti-inflammatory activity was evaluated by ELISA and qPCR. The result showed that the characteristic components of both 6- and 7-year-old ginseng were ginsenoside Rb1, mal-ginsenoside Rb1, ginsenoside Rc, mal-ginsenoside Rc, mal-ginsenoside Rb1 isomer, and mal-ginsenoside Rb2. Moreover, the characteristic components of both 4- and 5-year-old ginseng were ADP-glucose and 3-hydroxyhexanoyl CoA. In addition, 6-year-old NRG has higher rare ginsenosides than 4-year-old NRG, which possesses great anti-inflammatory activity in vitro. The results reveal the ginsenoside transformation law of NRG processing and suggest that the cultivation age of FG influences the content of ginsenosides in NRG. Therefore, 6-year-old ginseng is more suitable for red ginseng processing and clinical use.


Assuntos
Anti-Inflamatórios/farmacologia , Ginsenosídeos/farmacologia , Microglia/efeitos dos fármacos , Panax/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ginsenosídeos/isolamento & purificação , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Análise dos Mínimos Quadrados , Camundongos , Microglia/metabolismo , Óxido Nítrico/metabolismo , Panax/metabolismo , Extratos Vegetais/isolamento & purificação , Análise de Componente Principal , Espectrometria de Massas em Tandem , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
5.
Clin Epigenetics ; 12(1): 90, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571390

RESUMO

BACKGROUND: DNA methylation is a well-studied epigenetic mark that is frequently altered in diseases such as cancer, where specific changes are known to reflect the type and severity of the disease. Therefore, there is a growing interest in assessing the clinical utility of DNA methylation as a biomarker for diagnosing disease and guiding treatment. The development of an accurate loci-specific methylation assay, suitable for use on low-input clinical material, is crucial for advancing DNA methylation biomarkers into a clinical setting. A targeted multiplex bisulphite PCR sequencing approach meets these needs by allowing multiple DNA methylated regions to be interrogated simultaneously in one experiment on limited clinical material. RESULTS: Here, we provide an updated protocol and recommendations for multiplex bisulphite PCR sequencing (MBPS) assays for target DNA methylation analysis. We describe additional steps to improve performance and reliability: (1) pre-sequencing PCR optimisation which includes assessing the optimal PCR cycling temperature and primer concentration and (2) post-sequencing PCR optimisation to achieve uniform coverage of each amplicon. We use a gradient of methylated controls to demonstrate how PCR bias can be assessed and corrected. Methylated controls also allow assessment of the sensitivity of methylation detection for each amplicon. Here, we show that the MBPS assay can amplify as little as 0.625 ng starting DNA and can detect methylation differences of 1% with a sequencing coverage of 1000 reads. Furthermore, the multiplex bisulphite PCR assay can comprehensively interrogate multiple regions on 1-5 ng of formalin-fixed paraffin-embedded DNA or circulating cell-free DNA. CONCLUSIONS: The MBPS assay is a valuable approach for assessing methylated DNA regions in clinical samples with limited material. The optimisation and additional quality control steps described here improve the performance and reliability of this method, advancing it towards potential clinical applications in biomarker studies.


Assuntos
Metilação de DNA , Reação em Cadeia da Polimerase Multiplex/métodos , Neoplasias da Próstata/diagnóstico , Sequenciamento Completo do Genoma/métodos , Linhagem Celular Tumoral , Ilhas de CpG , Detecção Precoce de Câncer , Epigênese Genética , Marcadores Genéticos , Humanos , Masculino , Neoplasias da Próstata/genética , Tamanho da Amostra , Sensibilidade e Especificidade
6.
Nat Commun ; 11(1): 320, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949157

RESUMO

Endocrine therapy resistance frequently develops in estrogen receptor positive (ER+) breast cancer, but the underlying molecular mechanisms are largely unknown. Here, we show that 3-dimensional (3D) chromatin interactions both within and between topologically associating domains (TADs) frequently change in ER+ endocrine-resistant breast cancer cells and that the differential interactions are enriched for resistance-associated genetic variants at CTCF-bound anchors. Ectopic chromatin interactions are preferentially enriched at active enhancers and promoters and ER binding sites, and are associated with altered expression of ER-regulated genes, consistent with dynamic remodelling of ER pathways accompanying the development of endocrine resistance. We observe that loss of 3D chromatin interactions often occurs coincidently with hypermethylation and loss of ER binding. Alterations in active A and inactive B chromosomal compartments are also associated with decreased ER binding and atypical interactions and gene expression. Together, our results suggest that 3D epigenome remodelling is a key mechanism underlying endocrine resistance in ER+ breast cancer.


Assuntos
Sítios de Ligação , Neoplasias da Mama/genética , Cromatina/metabolismo , Epigênese Genética , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/metabolismo , Cromatina/química , Cromatina/genética , Metilação de DNA , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Sequenciamento Completo do Genoma
7.
Zhongguo Zhong Yao Za Zhi ; 44(18): 4034-4042, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31872742

RESUMO

This study aims to compare the internal chemical composition and appearance indifferent growth patterns and years of Saposhnikovia divaricata decoction pieces,which was applied to explore the effect of growth patterns and years on its quality. The appearance characteristic data of 55 batches of different growth patterns and years of S. divaricata were collected using PANTONE color card.High performance liquid chromatography( HPLC) was used to determine the contents of prim-O-glucosyl-cinmifugin,cimifugin,4-O-ß-D-glucosyl-5-O-methylvisamminol and sec-O-glucosylhamaudol. The content of alcohol soluble extract and water-soluble extract were determined by hot-dip method. The content of volatile oil was determined by steam distillation. The correlation between growth patterns and years and the contents of 4 chromones,extracts and volatile oil were analyzed by modern statistical methods. Also,the method of comprehensively evaluating the quality of Chinese herbal pieces was developed by combining the growth patterns and years,appearance and chemical indexes. MTT assay was used to evaluate the effects on the survival rate of RAW264. 7 cells at four different concentrations of chromones and LPS was used to stimulate well-growing RAW264. 7 cells to establish an inflammatory model. The contents of NO and TNF-α in cell supernatant were detected by NO test kit and ELISA method. The contents of alcohol soluble extracts and water-soluble extracts in different growth patterns and years are: wild productsperennial cultivation>annual cultivation; the contents of four chromones are: wild products>perennial cultivation and annual cultivation. There was no significant difference between the sum of the two indexes in the Pharmacopoeia of perennial cultivation and wild products. 4 chromones showed no toxicity to RAW264. 7 cells at 5 mg·L-1. The release of NO and TNF-α was inhibited by 4 chromones and the anti-inflammatory effect of cimifugin was the best. In summary,there are obvious differences in appearance characteristics,internal quality and effects between different growth patterns and years. It showed that the wild products were superior to the perennial cultivation and the perennial cultivation was superior to the annual cultivation. In order to alleviate the shortage of wild S. divaricata resources,it is suggested that the Chinese Pharmacopoeia standard should increase the character of decoction pieces of perennial cultivation,and properly raise the limit requirement of the sum of the two indexes in the Chinese Pharmacopoeia to ensure the clinical demands and effect.


Assuntos
Apiaceae/química , Medicamentos de Ervas Chinesas/normas , Óleos Voláteis/análise , Animais , Apiaceae/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
8.
Biomolecules ; 9(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683886

RESUMO

Many studies have focused on how autophagy plays an important role in intestinal homeostasis under pathological conditions. However, its role in the intestine during hibernation remains unclear. In the current study, we characterized in vivo up-regulation of autophagy in enterocytes of the small intestine of Chinese soft-shelled turtles during hibernation. Autophagy-specific markers were used to confirm the existence of autophagy in enterocytes through immunohistochemistry (IHC), immunofluorescence (IF), and immunoblotting. IHC staining indicated strong, positive immunoreactivity of the autophagy-related gene (ATG7), microtubule-associated protein light chain (LC3), and lysosomal-associated membrane protein 1 (LAMP1) within the mucosal surface during hibernation and poor expression during nonhibernation. IF staining results showed the opposite tendency for ATG7, LC3, and sequestosome 1 (p62). During hibernation ATG7 and LC3 showed strong, positive immunosignaling within the mucosal surface, while p62 showed strong, positive immunosignaling during nonhibernation. Similar findings were confirmed by immunoblotting. Moreover, the ultrastructural components of autophagy in enterocytes were revealed by transmission electron microscopy (TEM). During hibernation, the cumulative formation of phagophores and autophagosomes were closely associated with well-developed rough endoplasmic reticulum in enterocytes. These autophagosomes overlapped with lysosomes, multivesicular bodies, and degraded mitochondria to facilitate the formation of autophagolysosome, amphisomes, and mitophagy in enterocytes. Immunoblotting showed the expression level of PTEN-induced kinase 1 (PINK1), and adenosine monophosphate-activated protein kinase (AMPK) was enhanced during hibernation. Furthermore, the exosome secretion pathway of early-late endosomes and multivesicular bodies were closely linked with autophagosomes in enterocytes during hibernation. These findings suggest that the entrance into hibernation is a main challenge for reptiles to maintain homeostasis and cellular quality control in the intestine.


Assuntos
Autofagia , Enterócitos/citologia , Hibernação , Intestino Delgado/citologia , Tartarugas/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagossomos/metabolismo , Enterócitos/metabolismo , Intestino Delgado/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Tartarugas/genética
9.
Cancer Cell ; 35(2): 297-314.e8, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30753827

RESUMO

Promoter CpG islands are typically unmethylated in normal cells, but in cancer a proportion are subject to hypermethylation. Using methylome sequencing we identified CpG islands that display partial methylation encroachment across the 5' or 3' CpG island borders. CpG island methylation encroachment is widespread in prostate and breast cancer and commonly associates with gene suppression. We show that the pattern of H3K4me1 at CpG island borders in normal cells predicts the different modes of cancer CpG island hypermethylation. Notably, genetic manipulation of Kmt2d results in concordant alterations in H3K4me1 levels and CpG island border DNA methylation encroachment. Our findings suggest a role for H3K4me1 in the demarcation of CpG island methylation borders in normal cells, which become eroded in cancer.


Assuntos
Ilhas de CpG , Metilação de DNA , DNA de Neoplasias/metabolismo , Histonas/metabolismo , Neoplasias/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Masculino , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Regiões Promotoras Genéticas
10.
Nat Commun ; 10(1): 416, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679435

RESUMO

DNA replication timing is known to facilitate the establishment of the epigenome, however, the intimate connection between replication timing and changes to the genome and epigenome in cancer remain largely uncharacterised. Here, we perform Repli-Seq and integrated epigenome analyses and demonstrate that genomic regions that undergo long-range epigenetic deregulation in prostate cancer also show concordant differences in replication timing. A subset of altered replication timing domains are conserved across cancers from different tissue origins. Notably, late-replicating regions in cancer cells display a loss of DNA methylation, and a switch in heterochromatin features from H3K9me3-marked constitutive to H3K27me3-marked facultative heterochromatin. Finally, analysis of 214 prostate and 35 breast cancer genomes reveal that late-replicating regions are prone to cis and early-replication to trans chromosomal rearrangements. Together, our data suggests that the nature of chromosomal rearrangement in cancer is related to the spatial and temporal positioning and altered epigenetic states of early-replicating compared to late-replicating loci.


Assuntos
Aberrações Cromossômicas , Período de Replicação do DNA/fisiologia , Epigênese Genética/fisiologia , Neoplasias/genética , Neoplasias da Mama , Linhagem Celular Tumoral , Metilação de DNA , Replicação do DNA , Desoxirribonuclease I/análise , Epigenômica , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma , Genômica , Heterocromatina , Humanos , Masculino , Neoplasias da Próstata , Sequenciamento Completo do Genoma
11.
Eur Urol ; 76(3): 306-312, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30466891

RESUMO

BACKGROUND: Glutathione S-transferase 1 (GSTP1) expression is inactivated in >90% of all prostate cancers in association with aberrant DNA methylation. Detection of serum free methylated GSTP1 (mGSTP1) DNA is associated with overall survival (OS) and response to docetaxel in metastatic castration-resistant prostate cancer (mCRPC) in test and internal validation cohorts. OBJECTIVE: To assess the relationship between serum free mGSTP1 and treatment outcomes in SYNERGY, a phase 3 multicentre randomised trial testing the addition of custirsen to first-line chemotherapy with docetaxel in mCRPC. DESIGN, SETTING, AND PARTICIPANTS: Serum free mGSTP1 DNA was measured by a sensitive methylation-specific polymerase chain reaction assay in paired samples (baseline and after two cycles of docetaxel) from 600 patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Associations between serum free mGSTP1 at baseline, change in mGSTP1 after docetaxel, OS, and time to prostate-specific antigen (PSA) progression were examined using Cox proportional hazards models and Kaplan-Meier methods. RESULTS AND LIMITATIONS: Serum free mGSTP1 was detectable at baseline in 458 (81%) patients. Of those with detectable mGSTP1 at baseline, mGSTP1 became undetectable after two cycles in 243 (53%). Undetectable mGSTP1 at baseline was associated with longer OS (hazard ratio [HR] 0.4, 95% confidence interval [CI] 0.29-0.55; p<0.00001). The event of mGSTP1 becoming undetectable after two cycles of chemotherapy was associated with longer OS (HR 0.36, 95% CI 0.29-0.46; p<0.00001) and longer time to PSA progression (HR 0.44, 95% CI 0.35-0.56; p<0.00001). Associations between mGSTP1 and clinical outcomes were independent of other established prognostic variables. Analysis was limited by the lack of radiographic progression-free survival data. CONCLUSIONS: This is the first study to externally validate the prognostic role of a circulating epigenetic biomarker in mCRPC. Further studies are needed to validate serum free mGSTP1 as a surrogate endpoint for clinical trials and as a potential clinical decision tool. PATIENT SUMMARY: In this study, we confirmed that a blood marker predicted outcomes after chemotherapy for metastatic prostate cancer. This marker may accelerate future clinical trials of new therapies and be useful in the clinic to guide treatment decisions.


Assuntos
Antineoplásicos/uso terapêutico , DNA/sangue , Docetaxel/uso terapêutico , Glutationa Transferase/genética , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Idoso , Metilação de DNA , Intervalo Livre de Doença , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Resultado do Tratamento
12.
Genome Res ; 28(5): 625-638, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650553

RESUMO

The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples.


Assuntos
Metilação de DNA , Epigenômica/métodos , Neoplasias da Próstata/genética , Microambiente Tumoral/genética , Fibroblastos Associados a Câncer/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Humanos , Masculino , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/patologia , Sequenciamento Completo do Genoma/métodos
13.
Nat Commun ; 8(1): 1346, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116202

RESUMO

Acetylation of the histone variant H2A.Z (H2A.Zac) occurs at active promoters and is associated with oncogene activation in prostate cancer, but its role in enhancer function is still poorly understood. Here we show that H2A.Zac containing nucleosomes are commonly redistributed to neo-enhancers in cancer resulting in a concomitant gain of chromatin accessibility and ectopic gene expression. Notably incorporation of acetylated H2A.Z nucleosomes is a pre-requisite for activation of Androgen receptor (AR) associated enhancers. H2A.Zac nucleosome occupancy is rapidly remodeled to flank the AR sites to initiate the formation of nucleosome-free regions and the production of AR-enhancer RNAs upon androgen treatment. Remarkably higher levels of global H2A.Zac correlate with poorer prognosis. Altogether these data demonstrate the novel contribution of H2A.Zac in activation of newly formed enhancers in prostate cancer.


Assuntos
Elementos Facilitadores Genéticos/genética , Histonas/metabolismo , Neoplasias da Próstata/genética , Acetilação , Cromatina/genética , Cromatina/metabolismo , Intervalo Livre de Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Humanos , Masculino , Nucleossomos/genética , Nucleossomos/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
14.
Nat Commun ; 6: 5899, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25641231

RESUMO

Epigenetic alterations in the cancer methylome are common in breast cancer and provide novel options for tumour stratification. Here, we perform whole-genome methylation capture sequencing on small amounts of DNA isolated from formalin-fixed, paraffin-embedded tissue from triple-negative breast cancer (TNBC) and matched normal samples. We identify differentially methylated regions (DMRs) enriched with promoters associated with transcription factor binding sites and DNA hypersensitive sites. Importantly, we stratify TNBCs into three distinct methylation clusters associated with better or worse prognosis and identify 17 DMRs that show a strong association with overall survival, including DMRs located in the Wilms tumour 1 (WT1) gene, bi-directional-promoter and antisense WT1-AS. Our data reveal that coordinated hypermethylation can occur in oestrogen receptor-negative disease, and that characterizing the epigenetic framework provides a potential signature to stratify TNBCs. Together, our findings demonstrate the feasibility of profiling the cancer methylome with limited archival tissue to identify regulatory regions associated with cancer.


Assuntos
Metilação de DNA/fisiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Metilação de DNA/genética , Epigenômica , Feminino , Humanos , Dados de Sequência Molecular , Prognóstico
15.
J Vis Exp ; (56)2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22042230

RESUMO

Epigenetics describes the heritable changes in gene function that occur independently to the DNA sequence. The molecular basis of epigenetic gene regulation is complex, but essentially involves modifications to the DNA itself or the proteins with which DNA associates. The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC). DNA methylation provides instruction to gene expression machinery as to where and when the gene should be expressed. The primary target sequence for DNA methylation in mammals is 5'-CpG-3' dinucleotides (Figure 1). CpG dinucleotides are not uniformly distributed throughout the genome, but are concentrated in regions of repetitive genomic sequences and CpG "islands" commonly associated with gene promoters (Figure 1). DNA methylation patterns are established early in development, modulated during tissue specific differentiation and disrupted in many disease states including cancer. To understand the biological role of DNA methylation and its role in human disease, precise, efficient and reproducible methods are required to detect and quantify individual 5-MeCs. This protocol for bisulphite conversion is the "gold standard" for DNA methylation analysis and facilitates identification and quantification of DNA methylation at single nucleotide resolution. The chemistry of cytosine deamination by sodium bisulphite involves three steps (Figure 2). (1) Sulphonation: The addition of bisulphite to the 5-6 double bond of cytosine (2) Hydrolic Deamination: hydrolytic deamination of the resulting cytosine-bisulphite derivative to give a uracil-bisulphite derivative (3) Alkali Desulphonation: Removal of the sulphonate group by an alkali treatment, to give uracil. Bisulphite preferentially deaminates cytosine to uracil in single stranded DNA, whereas 5-MeC, is refractory to bisulphite-mediated deamination. Upon PCR amplification, uracil is amplified as thymine while 5-MeC residues remain as cytosines, allowing methylated CpGs to be distinguished from unmethylated CpGs by presence of a cytosine "C" versus thymine "T" residue during sequencing. DNA modification by bisulphite conversion is a well-established protocol that can be exploited for many methods of DNA methylation analysis. Since the detection of 5-MeC by bisulphite conversion was first demonstrated by Frommer et al. and Clark et al., methods based around bisulphite conversion of genomic DNA account for the majority of new data on DNA methylation. Different methods of post PCR analysis may be utilized, depending on the degree of specificity and resolution of methylation required. Cloning and sequencing is still the most readily available method that can give single nucleotide resolution for methylation across the DNA molecule.


Assuntos
Metilação de DNA , DNA/química , Sulfitos/química , Sequência de Bases , DNA/genética , DNA/metabolismo , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos
16.
Cancer Epidemiol Biomarkers Prev ; 20(1): 148-59, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21098650

RESUMO

BACKGROUND: Previously, we showed that gene suppression commonly occurs across chromosome 2q14.2 in colorectal cancer, through a process of long-range epigenetic silencing (LRES), involving a combination of DNA methylation and repressive histone modifications. We now investigate whether LRES also occurs in prostate cancer across this 4-Mb region and whether differential DNA methylation of 2q14.2 genes could provide a regional panel of prostate cancer biomarkers. METHODS: We used highly sensitive DNA methylation headloop PCR assays that can detect 10 to 25 pg of methylated DNA with a specificity of at least 1:1,000, and chromatin immunoprecipitation assays to investigate regional epigenetic remodeling across 2q14.2 in prostate cancer, in a cohort of 195 primary prostate tumors and 90 matched normal controls. RESULTS: Prostate cancer cells exhibit concordant deacetylation and methylation of histone H3 Lysine 9 (H3K9Ac and H3K9me2, respectively), and localized DNA hypermethylation of EN1, SCTR, and INHBB and corresponding loss of H3K27me3. EN1 and SCTR were frequently methylated (65% and 53%, respectively), whereas INHBB was less frequently methylated. CONCLUSIONS: Consistent with LRES in colorectal cancer, we found regional epigenetic remodeling across 2q14.2 in prostate cancer. Concordant methylation of EN1 and SCTR was able to differentiate cancer from normal (P < 0.0001) and improved the diagnostic specificity of GSTP1 methylation for prostate cancer detection by 26%. IMPACT: For the first time we show that DNA methylation of EN1 and SCTR promoters provide potential novel biomarkers for prostate cancer detection and in combination with GSTP1 methylation can add increased specificity and sensitivity to improve diagnostic potential.


Assuntos
Biomarcadores Tumorais/genética , Cromossomos Humanos Par 2 , Metilação de DNA , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Glutationa S-Transferase pi/genética , Proteínas de Homeodomínio/genética , Humanos , Subunidades beta de Inibinas/genética , Masculino , Reação em Cadeia da Polimerase/métodos , Prognóstico , Neoplasias da Próstata/diagnóstico , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Methods ; 27(2): 114-20, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12095268

RESUMO

Methylated cytosines appear as sequence variations following bisulfite treatment and polymerase chain reaction (PCR) amplification. By using methylation-specific PCR (MSP), it is possible to detect methylated sequences in a background of unmethylated DNA with a high level of sensitivity. MSP is frequently used to identify methylated alleles in carcinogenesis, and may be combined with the TaqMan real-time PCR system, which uses fluorescence-based detection of amplification products during the amplification phase of the PCR and increases the sensitivity of detection (MethyLight). Sequences that have been incompletely converted during the bisulfite treatment are frequently coamplified during MSP, resulting in an overestimation of DNA methylation. The presence of amplified sequences originating from partially unconverted material may be determined by sequencing or by restriction digests or Southern blots of MSPs. Alternately, we have developed a method where the PCR and conversion assay are combined within a single TaqMan reaction by using an additional fluorescent probe directed against unconverted DNA (ConLight-MSP). We recommend that MSP detection always should include a step to detect unconverted DNA to avoid overestimation of the frequency or level of methylated DNA in the sample.


Assuntos
Metilação de DNA , Conversão Gênica , Reação em Cadeia da Polimerase/métodos , Southern Blotting , Sondas de DNA , Reações Falso-Positivas , Glutationa S-Transferase pi , Glutationa Transferase/genética , Humanos , Isoenzimas/genética , Masculino , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA