Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(20): 8088-8096, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37155931

RESUMO

Metabolic footprinting as a convenient and non-invasive cell metabolomics strategy relies on monitoring the whole extracellular metabolic process. It covers nutrient consumption and metabolite secretion of in vitro cell culture, which is hindered by low universality owing to pre-treatment of the cell medium and special equipment. Here, we report the design and a variety of applicability, for quantifying extracellular metabolism, of fluorescently labeled single-stranded DNA (ssDNA)-AuNP encoders, whose multi-modal signal response is triggered by extracellular metabolites. We constructed metabolic response profiling of cells by detecting extracellular metabolites in different tumor cells and drug-induced extracellular metabolites. We further assessed the extracellular metabolism differences using a machine learning algorithm. This metabolic response profiling based on the DNA-AuNP encoder strategy is a powerful complement to metabolic footprinting, which significantly applies potential non-invasive identification of tumor cell heterogeneity.


Assuntos
Técnicas de Cultura de Células , Metabolômica , DNA
2.
Front Immunol ; 13: 968520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311808

RESUMO

Background: Brain injury is the main cause of poor prognosis in heatstroke (HS) patients due to heat-stress-induced neuronal apoptosis. However, as a new cross-talk way among cells, whether microglial exosomal-microRNAs (miRNAs) are involved in HS-induced neuron apoptosis has not been elucidated. Methods: We established a heatstroke mouse model and a heat-stressed neuronal cellular model on HT22 cell line. Then, we detected neuron apoptosis by histopathology and flow cytometry. The microglial exosomes are isolated by standard differential ultracentrifugation and characterized. Recipient neurons are treated with the control and HS exosomes, whereas in vivo, the exosomes were injected into the mice tail vein. The internalization of HS microglial exosomes by neurons was tracked. Apoptosis of HT22 was evaluated by flow cytometry and Western blot in vitro, TUNEL assay, and immunohistochemistry in vivo. We screened miR-466i-5p as the mostly upregulated microRNAs in HS exosomes by high-throughput sequencing and further conducted gene ontology (GO) pathway analysis. The effect and mechanism of HS exosomal miR-466i-5p on the induction of neuron apoptosis are demonstrated by nasal delivery of miR-466i-5p antagomir in vivo and transfecting miR-466i-5p mimics to HT22 in vitro. Results: HS induced an increase in neurons apoptosis. Microglial exosomes are identified and taken up by neurons, which induced HT22 apoptosis in vivo and vitro. HS significantly changed the miRNA profiles of microglial exosomes based on high-throughput sequencing. We selected miR-466i-5p as a target, and upregulated miR-466i-5p induced neurons apoptosis in vivo and vitro experiments. The effects are exerted by targeting Bcl-2, activating caspase-3 to induce neurons apoptosis. Conclusions: We demonstrate the effect of microglial exosomal miR-466i-5p on neurons apoptosis and reveal potentially Bcl-2/caspase-3 pathway in heatstroke.


Assuntos
Lesões Encefálicas , Golpe de Calor , MicroRNAs , Animais , Camundongos , Apoptose/genética , Lesões Encefálicas/patologia , Caspase 3/metabolismo , Golpe de Calor/genética , Hipocampo/metabolismo , Microglia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
Biomater Sci ; 10(15): 4119-4125, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35789225

RESUMO

Herein, a smart nanohydrogel with endogenous microRNA-21 toehold is developed to encapsulate gemcitabine-loaded mesoporous silica nanoparticles for targeted pancreatic cancer therapy. This toehold mediated strand displacement method can simultaneously achieve specific drug release and miRNA-21 silencing, resulting in the up-regulation of the expression of tumor suppressor genes PTEN and PDCD4.


Assuntos
MicroRNAs , Nanopartículas , DNA/genética , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Nanogéis
4.
Bioact Mater ; 7: 292-323, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34466734

RESUMO

Therapeutic oligonucleotides (TOs) represent one of the most promising drug candidates in the targeted cancer treatment due to their high specificity and capability of modulating cellular pathways that are not readily druggable. However, efficiently delivering of TOs to cancer cellular targets is still the biggest challenge in promoting their clinical translations. Emerging as a significant drug delivery vector, nanoparticles (NPs) can not only protect TOs from nuclease degradation and enhance their tumor accumulation, but also can improve the cell uptake efficiency of TOs as well as the following endosomal escape to increase the therapeutic index. Furthermore, targeted and on-demand drug release of TOs can also be approached to minimize the risk of toxicity towards normal tissues using stimuli-responsive NPs. In the past decades, remarkable progresses have been made on the TOs delivery based on various NPs with specific purposes. In this review, we will first give a brief introduction on the basis of TOs as well as the action mechanisms of several typical TOs, and then describe the obstacles that prevent the clinical translation of TOs, followed by a comprehensive overview of the recent progresses on TOs delivery based on several various types of nanocarriers containing lipid-based nanoparticles, polymeric nanoparticles, gold nanoparticles, porous nanoparticles, DNA/RNA nanoassembly, extracellular vesicles, and imaging-guided drug delivery nanoparticles.

5.
Proc Natl Acad Sci U S A ; 116(16): 7744-7749, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30926671

RESUMO

Effective cancer therapies often demand delivery of combinations of drugs to inhibit multidrug resistance through synergism, and the development of multifunctional nanovehicles with enhanced drug loading and delivery efficiency for combination therapy is currently a major challenge in nanotechnology. However, such combinations are more challenging to administer than single drugs and can require multipronged approaches to delivery. In addition to being stable and biodegradable, vehicles for such therapies must be compatible with both hydrophobic and hydrophilic drugs, and release drugs at sustained therapeutic levels. Here, we report synthesis of porous silicon nanoparticles conjugated with gold nanorods [composite nanoparticles (cNPs)] and encapsulate them within a hybrid polymersome using double-emulsion templates on a microfluidic chip to create a versatile nanovehicle. This nanovehicle has high loading capacities for both hydrophobic and hydrophilic drugs, and improves drug delivery efficiency by accumulating at the tumor after i.v. injection in mice. Importantly, a triple-drug combination suppresses breast tumors by 94% and 87% at total dosages of 5 and 2.5 mg/kg, respectively, through synergy. Moreover, the cNPs retain their photothermal properties, which can be used to significantly inhibit multidrug resistance upon near-infrared laser irradiation. Overall, this work shows that our nanovehicle has great potential as a drug codelivery nanoplatform for effective combination therapy that is adaptable to other cancer types and to molecular targets associated with disease progression.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos/métodos , Nanotubos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Antineoplásicos/uso terapêutico , Feminino , Ouro , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Nus , Técnicas Analíticas Microfluídicas , Nanomedicina , Nanotubos/química , Nanotubos/efeitos da radiação , Neoplasias Experimentais/tratamento farmacológico , Processos Fotoquímicos , Porosidade , Silício
6.
ACS Appl Bio Mater ; 1(3): 859-864, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34996178

RESUMO

Gastric cancer remains a disease of high mortality worldwide due to its poor prognosis. Previous studies have shown that microRNAs (miRNAs) are effective biomarkers for early diagnosis of gastric cancer. To realize sensitive detection of related miRNAs for improved early diagnosis, classification, and survival prognosis of gastric cancer, herein we developed a framework nucleic acid (FNA)-mediated microarray for quantitative analysis of multiple miRNAs. By rationally designing FNA with different sizes, we systematically modulated the surface density and lateral interactions of DNA probes, which provides an effective means for programmable tailoring of the hybridization efficiency and kinetics of the biosensing interface. We found that the hybridization efficiency was increased along with the size of the FNA and was optimum for FNA-17. In combination with the hybridization chain reaction amplification strategy, this established FNA microarray can serve as an ultrasensitive and selective analytical platform for simultaneous multiplexed detection of miRNA (e.g., FNA-miR-652, FNA-miR-627, and FNA-miR-629) biomarkers in gastric cancer.

7.
Adv Healthc Mater ; 6(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28941223

RESUMO

DNA origami is designed by folding DNA strands at the nanoscale with arbitrary control. Due to its inherent biological nature, DNA origami is used in drug delivery for enhancement of synergism and multidrug resistance inhibition, cancer diagnosis, and many other biomedical applications, where it shows great potential. However, the inherent instability and low payload capacity of DNA origami restrict its biomedical applications. Here, this paper reports the fabrication of an advanced biocompatible nano-in-nanocomposite, which protects DNA origami from degradation and facilities drug loading. The DNA origami, gold nanorods, and molecular targeted drugs are co-incorporated into pH responsive calcium phosphate [Ca3 (PO4 )2 ] nanoparticles. Subsequently, a thin layer of phospholipid is coated onto the Ca3 (PO4 )2 nanoparticle to offer better biocompatibility. The fabricated nanocomposite shows high drug loading capacity, good biocompatibility, and a photothermal and pH-responsive payload release profile and it fully protects DNA origami from degradation. The codelivery of DNA origami with cancer drugs synergistically induces cancer cell apoptosis, reduces the multidrug resistance, and enhances the targeted killing efficiency toward human epidermal growth factor receptor 2 positive cells. This nanocomposite is foreseen to open new horizons for a variety of clinical and biomedical applications.


Assuntos
Antineoplásicos/química , Fosfatos de Cálcio/química , DNA/química , Portadores de Fármacos/química , Ouro/química , Nanocompostos/química , Nanotubos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Temperatura
8.
ACS Appl Mater Interfaces ; 9(9): 8014-8020, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28221021

RESUMO

Adenosine triphosphate (ATP) is a central metabolite that is of critical importance in many cellular processes. The development of sensitive and selective methods for the detection of ATP level in vivo is crucial in diagnostic and theranostic applications. In this work, we have developed a polyA-based aptamer nanobeacon (PAaptNB) with improved efficiency and speed of ATP analysis. We found that the dissociation constants and competitive binding kinetics of the PAaptNB could be programmably regulated by adjusting the polyA length. When the polyA length reached to 30 bases, a 10 µM detection limit for ATP assay with PAaptNB can be achieved (∼10-fold improvement compared with the conventional thiol-based aptamer nanobeacon). The feasibility of the PAaptNB for in vivo assay was further demonstrated by imaging intracellular ATP molecules. This study provides a new strategy to construct high-efficiency and high-speed biosensors for cellular molecules analysis, which holds great potential in bioanalysis and theranostic applications.


Assuntos
Poli A/química , Trifosfato de Adenosina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ouro , Limite de Detecção , Nanoestruturas
9.
Adv Mater ; 28(46): 10195-10203, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27689681

RESUMO

Gold nanorods, DNA origami, and porous silicon nanoparticle-functionalized biocompatible double emulsion are developed for versatile molecular targeted therapeutics and antibody combination therapy. This advanced photothermal responsive all-in-one biocompatible platform can be easily formed with great therapeutics loading capacity for different cancer treatments with synergism and multidrug resistance inhibition, which has great potential in advancing biomedical applications.


Assuntos
Anticorpos/administração & dosagem , Anticorpos/uso terapêutico , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Neoplasias/tratamento farmacológico , Silício/química , Emulsões/química , Humanos , Nanomedicina/métodos , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA