Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677218

RESUMO

The arrival of the 5G era has promoted the need for filters of different bandwidths. Thin-film bulk acoustic resonators have become the mainstream product for applications due to their excellent performance. The Keff2 of the FBAR greatly influences the bandwidth of the filter. In this paper, we designed an AlN-based adjustable Keff2 FBAR by designing parallel capacitors around the active area of the resonator. The parallel capacitance is introduced through the support column structure, which is compatible with conventional FBAR processes. The effects of different support column widths on Keff2 were verified by finite element simulation and experimental fabrication. The measured results show that the designed FBAR with support columns can achieve a Keff2 value that is 25.9% adjustable.

2.
Microsyst Nanoeng ; 8: 124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457715

RESUMO

Bulk acoustic wave (BAW) filters have been extensively used in consumer products for mobile communication systems due to their high performance and standard complementary metal-oxide-semiconductor (CMOS) compatible integration process. However, it is challenging for a traditional aluminum nitride (AlN)-based BAW filter to meet several allocated 5G bands with more than a 5% fractional bandwidth via an acoustic-only approach. In this work, we propose an Al0.8Sc0.2N-based film bulk acoustic wave resonator (FBAR) for the design of radio frequency (RF) filters. By taking advantage of a high-quality Al0.8Sc0.2N thin film, the fabricated resonators demonstrate a large K eff 2 of 14.5% and an excellent figure of merit (FOM) up to 62. The temperature coefficient of frequency (TCF) of the proposed resonator is measured to be -19.2 ppm/°C, indicating excellent temperature stability. The fabricated filter has a center frequency of 4.24 GHz, a -3 dB bandwidth of 215 MHz, a small insertion loss (IL) of 1.881 dB, and a rejection >32 dB. This work paves the way for the realization of wideband acoustic filters operating in the 5G band.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA