Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1344647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450409

RESUMO

Appropriate straw incorporation has ample agronomic and environmental benefits, but most studies are limited to straw mulching or application on the soil surface. To determine the effect of depth of straw incorporation on the crop yield, soil organic carbon (SOC), total nitrogen (TN) and greenhouse gas emission, a total of 4 treatments were set up in this study, which comprised no straw returning (CK), straw returning at 15 cm (S15), straw returning at 25 cm (S25) and straw returning at 40 cm (S40). The results showed that straw incorporation significantly increased SOC, TN and C:N ratio. Compared with CK treatments, substantial increases in the grain yield (by 4.17~5.49% for S15 and 6.64~10.06% for S25) were observed under S15 and S25 treatments. S15 and S25 could significantly improve the carbon and nitrogen status of the 0-40 cm soil layer, thereby increased maize yield. The results showed that the maize yield was closely related to the soil carbon and nitrogen index of the 0-40 cm soil layer. In order to further evaluate the environmental benefits of straw returning, this study measured the global warming potential (GWP) and greenhouse gas emission intensity (GHGI). Compared with CK treatments, the GWP of S15, S25 and S40 treatments was increased by 9.35~20.37%, 4.27~7.67% and 0.72~6.14%, respectively, among which the S15 treatment contributed the most to the GWP of farmland. GHGI is an evaluation index of low-carbon agriculture at this stage, which takes into account both crop yield and global warming potential. In this study, GHGI showed a different trend from GWP. Compared with CK treatments, the S25 treatments had no significant difference in 2020, and decreased significantly in 2021 and 2022. This is due to the combined effect of maize yield and cumulative greenhouse gas emissions, indicating that the appropriate straw returning method can not only reduce the intensity of greenhouse gas emissions but also improve soil productivity and enhance the carbon sequestration effect of farmland soil, which is an ideal soil improvement and fertilization measure.

2.
Funct Plant Biol ; 50(3): 230-241, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456536

RESUMO

Soil salinity is a growing problem in agriculture, plant growth regulators (PGRs) can regulate plant response to stress. The objective of this study was to evaluate the effects of exogenous 6-benzyladenine (6-BA) on photosynthetic capacity and antioxidant defences in watermelon (Citrullus lanatus L.) seedlings under NaCl stress. Two watermelon genotypes were subjected to four different treatments: (1) normal water (control); (2) 20mgL-1 6-BA; (3) 120mmolL-1 NaCl; and (4) 120mmolL-1 NaCl+20mgL-1 6-BA. Our results showed that NaCl stress inhibited the growth of watermelon seedlings, decreased their photosynthetic capacity, promoted membrane lipid peroxidation, and lowered the activity of protective enzymes. Additionally the salt-tolerant Charleston Gray variety fared better than the salt-sensitive Zhengzi NO.017 variety under NaCl stress. Foliar spraying of 6-BA under NaCl stress significantly increased biomass accumulation, as well as photosynthetic pigment, soluble sugar, and protein content, while decreasing malondialdehyde levels, H2 O2 content, and electrolyte leakage. Moreover, 6-BA enhanced photosynthetic parameters, including net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate; activated antioxidant enzymes, such as superoxide dismutase, catalase, and peroxidase; and improved the efficiency of the ascorbate-glutathione cycle by stimulating glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, as well as ascorbic acid and glutathione content. Principal component analysis confirmed that 6-BA improved salt tolerance of the two watermelon varieties, particularly Zhengzi NO.017, albeit through two different regulatory mechanisms. In conclusion, 6-BA treatment could alleviate NaCl stress-induced damage and improve salt tolerance of watermelons by regulating photosynthesis and osmoregulation, activating the ascorbate-glutathione cycle, and promoting antioxidant defences.


Assuntos
Antioxidantes , Citrullus , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Plântula , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Citrullus/metabolismo , Fotossíntese , Glutationa/metabolismo , Glutationa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA