Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 4(2): e10131, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31249881

RESUMO

Advanced staged high-grade serous ovarian cancer (HGSOC) is the leading cause of gynecological cancer death in the developed world, with 5-year survival rates of only 25-30% due to late-stage diagnosis and the shortcomings of platinum-based therapies. A Phase I clinical trial of a combination of free cisplatin and poly(ADP-ribose) polymerase inhibitors (PARPis) showed therapeutic benefit for HGSOC. In this study, we address the challenge of resistance to platinum-based therapy by developing a targeted delivery approach. Novel electrostatic layer-by-layer (LbL) liposomal nanoparticles (NPs) with a terminal hyaluronic acid layer that facilitates CD44 receptor targeting are designed for selective targeting of HGSOC cells; the liposomes can be formulated to contain both cisplatin and the PARPi drug within the liposomal core and bilayer. The therapeutic effectiveness of LbL NP-encapsulated cisplatin and PARPi alone and in combination was compared with the corresponding free drugs in luciferase and CD44-expressing OVCAR8 orthotopic xenografts in female nude mice. The NPs exhibited prolonged blood circulation half-life, mechanistic staged drug release and targeted codelivery of the therapeutic agents to HGSOC cells. Moreover, compared to the free drugs, the NPs resulted in significantly reduced tumor metastasis, extended survival, and moderated systemic toxicity.

2.
Bioeng Transl Med ; 3(1): 26-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376131

RESUMO

DNA damaging chemotherapy is a cornerstone of current front-line treatments for advanced ovarian cancer (OC). Despite the fact that a majority of these patients initially respond to therapy, most will relapse with chemo-resistant disease; therefore, adjuvant treatments that synergize with DNA-damaging chemotherapy could improve treatment outcomes and survival in patients with this deadly disease. Here, we report the development of a nanoscale peptide-nucleic acid complex that facilitates tumor-specific RNA interference therapy to chemosensitize advanced ovarian tumors to frontline platinum/taxane therapy. We found that the nanoplex-mediated silencing of the protein kinase, MK2, profoundly sensitized mouse models of high-grade serous OC to cytotoxic chemotherapy by blocking p38/MK2-dependent cell cycle checkpoint maintenance. Combined RNAi therapy improved overall survival by 37% compared with platinum/taxane chemotherapy alone and decreased metastatic spread to the lungs without observable toxic side effects. These findings suggest (a) that peptide nanoplexes can serve as safe and effective delivery vectors for siRNA and (b) that combined inhibition of MK2 could improve treatment outcomes in patients currently receiving frontline chemotherapy for advanced OC.

3.
Nanomedicine ; 13(5): 1797-1808, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28263813

RESUMO

A ligand decorated, synthetic polypeptide block copolymer platform with environment-responsive capabilities was designed. We evaluated the potential of this system to function as a polymersome for targeted-delivery of a systemic chemotherapy to tumors. Our system employed click chemistry to provide a pH-responsive polypeptide block that drives nanoparticle assembly, and a ligand (folic acid) conjugated PEG block that targets folate-receptor over-expressing cancer cells. These nanocarriers were found to encapsulate a high loading of conventional chemotherapeutics (e.g. doxorubicin at physiological pH) and release the active therapeutic at lysosomal pH upon cellular uptake. The presence of folic acid on the nanoparticle surface facilitated their active accumulation in folate-receptor-overexpressing cancer cells (KB), compared to untargeted carriers. Folate-targeted nanoparticles loaded with doxorubicin also showed enhanced tumor accumulation in folate-receptor positive KB xenografts, resulting in the suppression of tumor growth in an in vivo hind flank xenograft mouse model.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Peptídeos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Ácido Fólico , Humanos , Camundongos , Polímeros
4.
Adv Funct Mater ; 26(7): 991-1003, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-27134622

RESUMO

Layer-by-layer (LbL) self-assembly is a versatile technique from which multicomponent and stimuli-responsive nanoscale drug carriers can be constructed. Despite the benefits of LbL assembly, the conventional synthetic approach for fabricating LbL nanoparticles requires numerous purification steps that limit scale, yield, efficiency, and potential for clinical translation. In this report, we describe a generalizable method for increasing throughput with LbL assembly by using highly scalable, closed-loop diafiltration to manage intermediate purification steps. This method facilitates highly controlled fabrication of diverse nanoscale LbL formulations smaller than 150 nm composed from solid-polymer, mesoporous silica, and liposomal vesicles. The technique allows for the deposition of a broad range of polyelectrolytes that included native polysaccharides, linear polypeptides, and synthetic polymers. We also explore the cytotoxicity, shelf life and long-term storage of LbL nanoparticles produced using this approach. We find that LbL coated systems can be reliably and rapidly produced: specifically, LbL-modified liposomes could be lyophilized, stored at room temperature, and reconstituted without compromising drug encapsulation or particle stability, thereby facilitating large scale applications. Overall, this report describes an accessible approach that significantly improves the throughput of nanoscale LbL drug-carriers that show low toxicity and are amenable to clinically relevant storage conditions.

5.
Bioeng Transl Med ; 1(3): 347-356, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28584879

RESUMO

The efficient transport of biological therapeutic materials to target tissues within the body is critical to their efficacy. In cartilage tissue, the lack of blood vessels prevents the entry of systemically administered drugs at therapeutic levels. Within the articulating joint complex, the dense and highly charged extracellular matrix (ECM) hinders the transport of locally administered therapeutic molecules. Consequently, cartilage injury is difficult to treat and frequently results in debilitating osteoarthritis. Here we show a generalizable approach in which the electrostatic assembly of synthetic polypeptides and a protein, insulin-like growth factor-1 (IGF-1), can be used as an early interventional therapy to treat injury to the cartilage. We demonstrated that poly(glutamic acid) and poly(arginine) associated with the IGF-1 via electrostatic interactions, forming a net charged nanoscale polyelectrolyte complex (nanoplex). We observed that the nanoplex diffused into cartilage plugs in vitro and stimulated ECM production. In vivo, we monitored the transport, retention and therapeutic efficacy of the nanoplex in an established rat model of cartilage injury. A single therapeutic dose, when administered within 48 hours of the injury, conferred protection against cartilage degradation and controlled interleukin-1 (IL-1) mediated inflammation. IGF-1 contained in the nanoplex was detected in the joint space for up to 4 weeks following administration and retained bioactivity. The results indicate the potential of this approach as an early intervention therapy following joint injury to delay or even entirely prevent the onset of osteoarthritis.

6.
J Pharm Sci ; 104(12): 4409-4416, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26344409

RESUMO

Standard cell proliferation assays use bulk media drug concentration to ascertain the potency of chemotherapeutic drugs; however, the relevant quantity is clearly the amount of drug actually taken up by the cell. To address this discrepancy, we have developed a flow cytometric clonogenic assay to correlate the amount of drug in a single cell with the cell's ability to proliferate using a cell tracing dye and doxorubicin, a naturally fluorescent chemotherapeutic drug. By varying doxorubicin concentration in the media, length of treatment time, and treatment with verapamil, an efflux pump inhibitor, we introduced 10(5) -10(10) doxorubicin molecules per cell; then used a dye-dilution assay to simultaneously assess the number of cell divisions. We find that a cell's ability to proliferate is a surprisingly conserved function of the number of intracellular doxorubicin molecules, resulting in single-cell IC50 values of 4-12 million intracellular doxorubicin molecules. The developed assay is a straightforward method for understanding a drug's single-cell potency and can be used for any fluorescent or fluorescently labeled drug, including nanoparticles or antibody-drug conjugates.


Assuntos
Doxorrubicina/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias/métodos , Corantes/farmacologia , Citometria de Fluxo/métodos , Corantes Fluorescentes/farmacologia , Células HT29 , Humanos , Nanopartículas/administração & dosagem , Verapamil/farmacologia
7.
Proc Natl Acad Sci U S A ; 111(35): 12847-52, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136093

RESUMO

Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/farmacologia , Medicina Regenerativa/métodos , Crânio/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Alendronato/farmacologia , Indutores da Angiogênese/farmacologia , Animais , Becaplermina , Materiais Biocompatíveis/farmacologia , Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/efeitos dos fármacos , Modelos Animais de Doenças , Ácido Láctico/farmacologia , Masculino , Membranas Artificiais , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Crânio/lesões
8.
Mol Pharm ; 11(7): 2420-30, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24813025

RESUMO

Herein we report the potential of click chemistry-modified polypeptide-based block copolymers for the facile fabrication of pH-sensitive nanoscale drug delivery systems. PEG-polypeptide copolymers with pendant amine chains were synthesized by combining N-carboxyanhydride-based ring-opening polymerization with post-functionalization using azide-alkyne cycloaddition. The synthesized block copolymers contain a polypeptide block with amine-functional side groups and were found to self-assemble into stable polymersomes and disassemble in a pH-responsive manner under a range of biologically relevant conditions. The self-assembly of these block copolymers yields nanometer-scale vesicular structures that are able to encapsulate hydrophilic cytotoxic agents like doxorubicin at physiological pH but that fall apart spontaneously at endosomal pH levels after cellular uptake. When drug-encapsulated copolymer assemblies were delivered systemically, significant levels of tumor accumulation were achieved, with efficacy against the triple-negative breast cancer cell line, MDA-MB-468, and suppression of tumor growth in an in vivo mouse model.


Assuntos
Portadores de Fármacos/química , Endossomos/química , Nanopartículas/química , Peptídeos/química , Polietilenoglicóis/química , Polímeros/química , Animais , Linhagem Celular Tumoral , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Polimerização , Solubilidade
9.
Adv Healthc Mater ; 3(6): 867-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24124132

RESUMO

Current treatment options for debilitating bone diseases such as osteosarcoma, osteoporosis, and bone metastatic cancer are suboptimal and have low efficacy. New treatment options for these pathologies require targeted therapy that maximizes exposure to the diseased tissue and minimizes off-target side effects. This work investigates an approach for generating functional and targeted drug carriers specifically for treating primary osteosarcoma, a disease in which recurrence is common and the cure rate has remained around 20%. This approach utilizes the modularity of Layer-by-Layer (LbL) assembly to generate tissue-specific drug carriers for systemic administration. This is accomplished via surface modification of drug-loaded nanoparticles with an aqueous polyelectrolyte, poly(acrylic acid) (PAA), side-chain functionalized with alendronate, a potent clinically used bisphosphonate. Nanoparticles coated with PAA-alendronate are observed to bind and internalize rapidly in human osteosarcoma 143B cells. Encapsulation of doxorubicin, a front-line chemotherapeutic, in an LbL-targeted liposome demonstrates potent toxicity in vitro. Active targeting of 143B xenografts in NCR nude mice with the LbL-targeted doxorubicin liposomes promotes enhanced, prolonged tumor accumulation and significantly improved efficacy. This report represents a tunable approach towards the synthesis of drug carriers, in which LbL enables surface modification of nanoparticles for tissue-specific targeting and treatment.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Resinas Acrílicas/química , Alendronato/administração & dosagem , Alendronato/química , Animais , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/química , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Meia-Vida , Humanos , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Radiografia , Transplante Heterólogo
10.
Adv Drug Deliv Rev ; 64(9): 866-84, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22349241

RESUMO

The use of polymeric nanocarriers to transport active compounds like small-molecular drugs, peptides, or genes found an increased attention throughout the different fields of natural sciences. Not only that these nanocarriers enhance the properties of already existing drugs in terms of solubility, bioavailability, and prolonged circulation times, furthermore they can be tailor-made in such a manner that they selectively release their cargo at the desired site of action. For the triggered release, these so-called smart drug delivery systems are designed to react on certain stimuli like pH, temperature, redox potential, enzymes, light, and ultrasound. Some of these stimuli are naturally occurring in vivo, for example the difference in pH in different cellular compartments while others are caused by the disease, which is to be treated, like differences in pH and temperature in some tumor tissues. Other external applied stimuli, like light and ultrasound, allow the temporal and spatial control of the release, since they are not triggered by any biological event. This review gives a brief overview about some types of stimuli-responsive nanocarriers with the main focus on organic polymer-based systems. Furthermore, the different stimuli and the design of corresponding responsive nanocarriers will be discussed with the help of selected examples from the literature.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Polímeros/administração & dosagem , Polímeros/química , Animais , Transporte Biológico , Humanos
11.
J Control Release ; 132(3): 289-94, 2008 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18639596

RESUMO

Here we present the efficiency and versatility of newly developed core-multishell nanoparticles (CMS NPs), to encapsulate and transport the antitumor drugs doxorubicin hydrochloride (Dox), methotrexate (Mtx) and sodium ibandronate (Ibn) as well as dye molecules, i.e., a tetrasulfonated indotricarbocyanine (ITCC) and nile red. Structurally, the CMS NPs are composed of hyperbranched poly(ethylene imine) core functionalized by alkyl diacids connected to monomethyl poly(ethylene glycol). In order to evaluate their transport in aqueous media in vitro, we have used and compared SEC, UV, ITC, and NMR techniques. We observed that the CMS NPs were able to spontaneously encapsulate and transport Dox, Mtx and nile red in both organic and aqueous media as determined by SEC and UV-VIS spectroscopy. For the VIS transparent Ibn Isothermal Titration Calorimetric (ITC) experiments show an exothermic interaction with the CMS NPs. The enthalpic stabilization (DeltaH) upon encapsulation was in the order of approximately 7 kcals/mol which indicates stable interaction between Ibn and nanoparticles. A T(1) inversion recovery NMR experiment was carried out for 31P and 1H nuclei of Ibn and an increment of spin-lattice relaxation time for respective nuclei was observed upon encapsulation. CMS NPs were also found to encapsulate ITCC dye with stoichiometry of 6-8 molecules/nanocarrier. For in vivo imaging studies the dye loaded CMS NPs were injected to F9 teratocarcinoma bearing mice and a strong contrast was observed in the tumor tissues compared to free dye after 6 h of administration.


Assuntos
Antineoplásicos/metabolismo , Corantes/metabolismo , Portadores de Fármacos , Nanopartículas , Polietilenoglicóis/química , Polietilenoimina/química , Animais , Antineoplásicos/química , Calorimetria , Carbocianinas/metabolismo , Química Farmacêutica , Cromatografia em Gel , Corantes/administração & dosagem , Corantes/química , Corantes/farmacocinética , Difosfonatos/metabolismo , Doxorrubicina/metabolismo , Composição de Medicamentos , Ácido Ibandrônico , Injeções Intravenosas , Espectroscopia de Ressonância Magnética , Metotrexato/metabolismo , Camundongos , Oxazinas/metabolismo , Espectrofotometria Ultravioleta , Tecnologia Farmacêutica/métodos , Teratocarcinoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA