Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today Technol ; 26: 11-16, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29249237

RESUMO

The recent advancement of peptide macrocycles as promising therapeutics creates a need for novel methodologies for their efficient synthesis and (large scale) production. Within this context, due to the favorable properties of biocatalysts, enzyme-mediated methodologies have gained great interest. Enzymes such as sortase A, butelase 1, peptiligase and omniligase-1 represent extremely powerful and valuable enzymatic tools for peptide ligation, since they can be applied to generate complex cyclic peptides with exquisite biological activity. Therefore, the use of enzymatic strategies will effectively supplement the scope of existing chemical methodologies and will accelerate the development of future cyclic peptide therapeutics. The advantages and disadvantages of the different enzymatic methodologies will be discussed in this review.


Assuntos
Peptídeos/química , Catálise , Ciclização , Cisteína Endopeptidases/química , Subtilisina/química
2.
Enzyme Microb Technol ; 73-74: 20-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26002500

RESUMO

Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the subtilase class were cloned from Thermus aquaticus and Deinococcus geothermalis and expressed in Escherichia coli. The purified enzymes were highly thermostable and catalyzed efficient peptide bond synthesis at 80°C and 60°C in neat acetonitrile with excellent conversion (>90%). The enzymes tolerated high levels of N,N-dimethylformamide (DMF) as a cosolvent (40-50% v/v), which improved substrate solubility and gave good conversion in 5+3 peptide condensation reactions. The results suggest that proteases from thermophiles can be used for peptide synthesis under harsh reaction conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas de Química Sintética , Deinococcus/enzimologia , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Solventes , Thermus/enzimologia , 2-Propanol , Acetona , Acetonitrilas , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Precipitação Química , Deinococcus/genética , Dimetilformamida , Escherichia coli/metabolismo , Genes Bacterianos , Temperatura Alta , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Estabilidade Proteica , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Thermus/genética , terc-Butil Álcool
3.
Protein Expr Purif ; 89(1): 73-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357810

RESUMO

Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in chemoenzymatic peptide synthesis. For this application it is essential to use PDF preparations that are free of contamination by peptidases that can cleave internal peptide bonds. Therefore, different purification methods were attempted and an industrially applicable purification procedure was developed based on a single anion-exchange chromatography step of an engineered PDF variant that was equipped with an anionic octaglutamate tag. The deformylation activity and stability of the engineered enzyme were similar to those of the wild-type PDF. This purification method furnished a PDF preparation with a 1500-fold decreased level of contamination by amidases and peptidases as compared to cell-free extract. It was shown that the enzyme could be used for deprotection of a formylated dipeptide that was prepared by thermolysin-mediated coupling.


Assuntos
Amidoidrolases/isolamento & purificação , Escherichia coli/enzimologia , Peptídeos , Amidoidrolases/química , Catálise , Sistema Livre de Células , Técnicas de Química Sintética , Metionina/química , Peptídeos/síntese química , Peptídeos/química
4.
Org Biomol Chem ; 10(33): 6767-75, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22814948

RESUMO

A series of novel glycine esters was evaluated for efficiency in subtilisin A-CLEA-catalysed peptide synthesis. The reactivity of the easily accessible carboxyamidomethyl (Cam) ester was further enhanced by elongating it with an amino acid residue, thereby creating more recognition space for subtilisin A.


Assuntos
Bacillus subtilis/enzimologia , Glicina/análogos & derivados , Peptídeos/síntese química , Peptídeos/metabolismo , Subtilisinas/metabolismo , Catálise , Ésteres/química , Biossíntese Peptídica , Peptídeos/química
5.
Chembiochem ; 12(14): 2201-7, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21826775

RESUMO

The substrate mimetics approach is a versatile method for small-scale enzymatic peptide-bond synthesis in aqueous systems. The protease-recognized amino acid side chain is incorporated in an ester leaving group, the substrate mimetic. This shift of the specific moiety enables the acceptance of amino acids and peptide sequences that are normally not recognized by the enzyme. The guanidinophenyl group (OGp), a known substrate mimetic for the serine proteases trypsin and chymotrypsin, has now been applied for the first time in combination with papain, a cheap and commercially available cysteine protease. To provide insight in the binding mode of various Z-X(AA)-OGp esters, computational docking studies were performed. The results strongly point at enzyme-specific activation of the OGp esters in papain through a novel mode of action, rather than their functioning as mimetics. Furthermore, the scope of a model dipeptide synthesis was investigated with respect to both the amino acid donor and the nucleophile. Molecular dynamics simulations were carried out to prioritize 22 natural and unnatural amino acid donors for synthesis. Experimental results correlate well with the predicted ranking and show that nearly all amino acids are accepted by papain.


Assuntos
Biocatálise , Materiais Biomiméticos/química , Guanidina/química , Papaína/metabolismo , Peptídeos/química , Peptídeos/síntese química , Dipeptídeos/síntese química , Dipeptídeos/química , Ésteres , Simulação de Dinâmica Molecular , Conformação Proteica , Reprodutibilidade dos Testes , Água/química
6.
J Org Chem ; 74(15): 5145-50, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19534522

RESUMO

A mild and cost-efficient chemo-enzymatic method for the synthesis of C-terminal arylamides of amino acid and peptides is described. Using the industrial serine protease Alcalase under near-anhydrous conditions, C-terminal arylamides of N-Cbz-protected amino acids and peptides could be obtained from the corresponding C-terminal carboxylic acids, methyl (Me) or benzyl (Bn) esters, in high chemical and enantio- and diastereomeric purities. Yields ranged between 50% and 95% depending on the size of the aryl substituents and the presence of electron-withdrawing substituents. Complete alpha-C-terminal selectivity could be obtained even in the presence of various unprotected side-chain functionalities such as beta/gamma-carboxyl, hydroxyl, and guanidino groups. In addition, the use of the cysteine protease papain and the lipase Cal-B gave anilides in high yields. The chemo-enzymatic synthesis of arylamides proved to be completely free of racemization, in contrast to the state-of-the-art chemical methods.


Assuntos
Amidas/química , Amidas/metabolismo , Aminoácidos/química , Peptídeos/química , Subtilisinas/metabolismo , Anilidas/química , Anilidas/metabolismo , Bacillus/enzimologia , Lipase/metabolismo , Conformação Molecular , Papaína/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA