Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Theriogenology ; 225: 152-161, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38805997

RESUMO

Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. During in vitro culture, many stressful conditions can affect embryo quality and viability, leading to adverse clinical outcomes such as abortion and congenital abnormalities. In this study, we found that valeric acid (VA) increased the mitochondrial membrane potential and ATP content, decreased the level of reactive oxygen species that the mitochondria generate, and thus improved mitochondrial function during early embryonic development in pigs. VA decreased expression of the autophagy-related factors LC3B and BECLIN1. Interestingly, VA inhibited expression of autophagy-associated phosphorylation-adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylation-UNC-51-like autophagy-activated kinase 1 (p-ULK1, Ser555), and ATG13, which reduced apoptosis. Short-chain fatty acids (SCFAs) can signal through G-protein-coupled receptors on the cell membrane or enter the cell directly through transporters. We further show that the monocarboxylate transporter 1 (MCT1) was necessary for the effects of VA on embryo quality, which provides a new molecular perspective of the pathway by which SCFAs affect embryos. Importantly, VA significantly inhibited the AMPK-ULK1 autophagic signaling pathway through MCT1, decreased apoptosis, increased expression of embryonic pluripotency genes, and improved embryo quality.

2.
Br J Pharmacol ; 179(18): 4563-4574, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751868

RESUMO

BACKGROUND AND PURPOSE: Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disease affecting women of reproductive age. Due to its complex aetiology, there is no currently effective cure for PCOS. Brown adipose tissue (BAT) activity is significantly decreased in PCOS patients, and BAT activation has beneficial effects in animal models of PCOS. Here, we investigated the effect of ginsenoside compound K (CK) in an animal model of PCOS and its mechanism of BAT activation. EXPERIMENTAL APPROACH: Primary brown adipocytes, Db/Db mice and dehydroepiandrosterone (DHEA)-induced PCOS rats were used. The core body temperature, oxygen consumption, energy metabolism related gene and protein expression were assessed to identify the effect of CK on overall energy metabolism. Oestrous cycle, serum sex hormone, ovarian steroidogenic enzyme gene expression and ovarian morphology were also evaluated following CK treatment. KEY RESULTS: Our results indicated that CK treatment could significantly protect against body weight gain in Db/Db mice via BAT activation. Furthermore, we found that CK treatment could normalize hyperandrogenism, oestrous cyclicity, normalize steroidogenic enzyme expression and decrease the number of cystic follicles in PCOS rats. Interestingly, as a potential endocrine intermediate, C-X-C motif chemokine ligand-14 protein (CXCL14) was significantly up-regulated following CK administration. In addition, exogenous CXC14 supplementation was found to reverse DHEA-induced PCOS in a phenotypically similar manner to CK treatment. CONCLUSION AND IMPLICATIONS: In summary, CK treatment significantly activates BAT, increases CXCL14 expression and ameliorates PCOS. These findings suggest that CK might be a potential drug candidate for PCOS treatment.


Assuntos
Ginsenosídeos , Síndrome do Ovário Policístico , Tecido Adiposo Marrom/metabolismo , Animais , Desidroepiandrosterona/efeitos adversos , Modelos Animais de Doenças , Feminino , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Humanos , Camundongos , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Ratos
3.
Biomed Chromatogr ; 32(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28986996

RESUMO

Panax ginseng is widely consumed as a functional food in the form of tea, powder, capsules, among others, and possesses a range of pharmacological activities including adaptogenic, immune-modulatory, anti-tumor, anti-aging and anti-inflammatory effects. The aim of this study was to identify and quantify the major ginsenosides and their metabolites in rat plasma, urine and feces after administration of P. ginseng extract using LC-MS/MS. We collected rat plasma samples at 0.5, 1, 2, 4, 8, 12, 24 and 48 h, and the amounts of urine and fecal samples accumulated in 24 h. Fourteen major ginsenosides and their metabolites were observed in fecal samples at high levels; however, low levels of 11 ginsenosides were detected in urine samples. The pharmacokinetics of the major ginsenosides and their metabolites was investigated in plasma. The results indicated that the maximum plasma concentration, time to maximum concentration and area under the curve of compound K were significantly greater than those of other ginsenosides. This study thus provides valuable information for drug development and clinical application of P. ginseng.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Fezes/química , Ginsenosídeos/análise , Ginsenosídeos/farmacocinética , Panax , Administração Oral , Animais , Cromatografia Líquida/métodos , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Limite de Detecção , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
4.
Int J Syst Evol Microbiol ; 66(12): 5320-5327, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27666743

RESUMO

Ginseng-cultivated soil is an excellent habitat for soil-borne bacteria to proliferate. A novel strain, DCY87T, was isolated from ginseng-cultivated soil in Gochang County, Republic of Korea, and subsequently characterized by polyphasic approach. Cells were rod shaped, non-motile, aerobic, Gram-reaction-positive, oxidase-negative and catalase-positive. 16S rRNA gene sequence analysis showed that strain DCY87T shared the highest similarity to 'Phycicoccus ochangensis' L1b-b9 (98.7 %). Closely phylogenetic relatives of strain DCY87T were identified: Phycicoccus ginsenosidimutans BXN5-13T (97.9 %), Phycicoccus soli THG-a14T (97.8 %), Phycicoccus bigeumensis MSL-03T (97.3 %), Phycicoccus cremeus V2M29T (97.3 %), Phycicoccus aerophilus 5516T-20T (97.3 %), Phycicoccus dokdonensis DS-8T (97.3 %) and Phycicoccus jejuensis KSW2-15T (97.1 %). The major polar lipids were classified as phosphatidylinositol and diphosphatidylglycerol. The major cellular fatty acids were composed of iso-C15 : 0, anteiso-C15:0, C17 : 0 and C17 : 1ω8c. The menaquinone was resolved as MK-8(H4). Strain DCY87T contained meso-diaminopimelic acid as diamino acid in the cell-wall peptidoglycan and glucose, xylose and rhamnose in the whole-cell sugar. The genomic DNA G+C content was calculated to be 72.7 mol%. DNA-DNA hybridization value between strain DCY87T and 'P. ochangensis' L1b-b9 was estimated to be 50 %. However, DNA-DNA hybridization value obtained between strain DCY87T and P. ginsenosidimutans BXN5-13T, P. soli THG-a14T and P. bigeumensis MSL-03T was well below 17 %. In general, polyphasic taxonomy demonstrated that DCY87T strain represented a novel species within the genus Phycicoccus. Accordingly, we propose the name Phycicoccus ginsengisoli sp. nov. The type strain is DCY87T (=KCTC 39635T=JCM 31016T).


Assuntos
Actinomycetales/classificação , Panax/microbiologia , Filogenia , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Biotechnol Lett ; 34(5): 913-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22261865

RESUMO

Ginsenosides Re and Rg1 were transformed by recombinant ß-glucosidase (Bgp1) to ginsenosides Rg2 and Rh1, respectively. The bgp1 gene consists of 2,496 bp encoding 831 amino acids which have homology to the glycosyl hydrolase families 3 protein domain. Using 0.1 mg enzyme ml(-1) in 20 mM sodium phosphate buffer at 37°C and pH 7.0, the glucose moiety attached to the C-20 position of ginsenosides Re and Rg1, was removed: 1 mg ginsenoside Re ml(-1) was transformed into 0.83 mg Rg2 ml(-1) (100% molar conversion) after 2.5 h and 1 mg ginsenoside Rg1 ml(-1) was transformed into 0.6 mg ginsenoside Rh1 ml(-1) (78% molar conversion) in 15 min. Using Bgp1 enzyme, almost all initial ginsenosides Re and Rg1 were converted completely to ginsenosides Rg2 and Rh1. This is the first report of the conversion of ginsenoside Re to ginsenoside Rg2 and ginsenoside Rg1 to ginsenoside Rh1 using the recombinant ß-glucosidase.


Assuntos
Actinomycetales/enzimologia , Ginsenosídeos/metabolismo , Glucosidases/metabolismo , beta-Galactosidase/metabolismo , Actinomycetales/genética , Biotransformação , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura , beta-Galactosidase/química , beta-Galactosidase/genética
6.
Braz. j. microbiol ; 42(3): 1227-1237, July-Sept. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-607559

RESUMO

About 40 different types of ginsenoside (ginseng saponin), a major pharmacological component of ginseng, have been identified along with their physiological activities. Among these, compound K has been reported to prevent the development of and the metastasis of cancer by blocking the formation of tumors and suppressing the invasion of cancerous cells. In this study, ginsenoside Rb1 was converted into compound K via interaction with the enzyme secreted by ¥â-glucosidase active bacteria, Leuconostoc citreum LH1, extracted from kimchi. The optimum time for the conversion of Rb1 to compound K was about 72 hrs at a constant pH of 6.0 and an optimum temperature of about 30¨¬C. Under optimal conditions, ginsenoside Rb1 was decomposed and converted into compound K by 72 hrs post-reaction (99 percent). Both TLC and HPLC were used to analyze the enzymatic reaction. Ginsenoside Rb1 was consecutively converted to ginsenoside Rd, F2, and compound K via the hydrolyses of 20-C ¥â-(1 ¡æ 6)-glucoside, 3-C ¥â-(1 ¡æ 2)glucoside, and 3-C ¥â-glucose of ginsenoside Rb1.


Assuntos
Cromatografia , Enzimas Reparadoras do DNA/análise , Técnicas In Vitro , Leuconostoc/enzimologia , Leuconostoc/isolamento & purificação , Panax/enzimologia , Estruturas Vegetais
7.
Braz J Microbiol ; 42(3): 1227-37, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24031746

RESUMO

About 40 different types of ginsenoside (ginseng saponin), a major pharmacological component of ginseng, have been identified along with their physiological activities. Among these, compound K has been reported to prevent the development of and the metastasis of cancer by blocking the formation of tumors and suppressing the invasion of cancerous cells. In this study, ginsenoside Rb1 was converted into compound K via interaction with the enzyme secreted by ß-glucosidase active bacteria, Leuconostoc citreum LH1, extracted from kimchi. The optimum time for the conversion of Rb1 to compound K was about 72 hrs at a constant pH of 6.0 and an optimum temperature of about 30°C. Under optimal conditions, ginsenoside Rb1 was decomposed and converted into compound K by 72 hrs post-reaction (99%). Both TLC and HPLC were used to analyze the enzymatic reaction. Ginsenoside Rb1 was consecutively converted to ginsenoside Rd, F2, and compound K via the hydrolyses of 20-C ß-(1 → 6)-glucoside, 3-C ß-(1 → 2)-glucoside, and 3-C ß-glucose of ginsenoside Rb1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA