Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(5): 7533-7542, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159183

RESUMO

Biochar, as a soil amendment, can be applied to remediate heavy metal (HM) contaminated farmland. However, there is little research on the effect of tobacco biochar (TB) derived from tobacco waste on HM controlling in edible parts of vegetables. In this study, the impact of two TB levels on the plant growth, copper (Cu) and cadmium (Cd) accumulation in the edible parts of lettuce and chrysanthemum, and on Cu and Cd bioavailability of rhizosphere soil was investigated through in-situ field experiments. The results showed that TB has rich oxygen containing functional groups, high porosity, high nitrogen adsorption capacity. The addition of 5 t ha-1 and 10 t ha-1 TB significantly increased the shoot biomass of chrysanthemum, but had no effect on the growth of lettuce. Two levels of TB significantly increased the pH value, but decreased the available Cu and Cd concentrations of rhizosphere soil, thereby reducing the Cu and Cd accumulations in the edible parts of lettuce and chrysanthemum. The findings provided effective evidences that TB derived from tobacco waste is an efficient strategy for controlling Cu and Cd accumulation in the edible parts of vegetables to ensure agri-product safety production in HM-polluted farmland.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Cobre , Verduras , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal , Nicotiana , Solo , Lactuca
2.
Chemosphere ; 334: 138857, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37187383

RESUMO

The root tips of host plant species can establish ectomycorrhizae with their fungal partners, thereby altering the responses of the host plants to heavy metal (HM) toxicity. Here, two species of Laccaria, L. bicolor and L. japonica, were investigated in symbiosis with Pinus densiflora to study their potential for promotion of phytoremediation of HM-contaminated soils in pot experiments. The results showed that L. japonica had significantly higher dry biomass than L. bicolor in mycelia grown on modified Melin-Norkrans medium containing elevated levels of cadmium (Cd) or copper (Cu). Meanwhile, the accumulations of Cd or Cu in L. bicolor mycelia were much higher than that in L. japonica at the same level of Cd or Cu. Therefore, L. japonica displayed a stronger tolerance to HM toxicity than L. bicolor in situ. Compared with non-mycorrhizal P. densiflora seedlings, inoculation with two Laccaria species significantly increased the growth of P. densiflora seedlings in absence or presence of HM. The mantle of host roots blocked the uptake and migration of HM, which led to the decrease of Cd and Cu accumulation in the P. densiflora shoots and roots, except for the root Cd accumulation of L. bicolor-mycorrhizal plants when 25 mg kg-1 Cd exposure. Furthermore, HM distribution in mycelia showed Cd and Cu are mainly retained in the cell walls of mycelia. These results provide strong evidence that the two species of Laccaria in this system may have different strategies to assist host tree against HM toxicity.


Assuntos
Laccaria , Micorrizas , Pinus , Micorrizas/fisiologia , Cádmio/toxicidade , Laccaria/fisiologia , Cobre/toxicidade , Raízes de Plantas/microbiologia
3.
Bull Environ Contam Toxicol ; 110(1): 37, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607448

RESUMO

Phytoextraction is an efficient strategy for remediating heavy metal-contaminated soil. Chelators can improve the bioavailability of heavy metals and increase phytoextraction efficiency. However, traditional chelators have gradually been replaced due to secondary pollution. In this study, a typical organic acid (citric acid, CA) and a novel biodegradable chelator (poly-glutamic acid, PGA), were investigated using pot experiments to compare the phytoextraction efficiency of Solanum nigrum L. (a Cd (hyper)accumulator) for cadmium (Cd) and lead (Pb) in contaminated soil. The results showed CA and PGA significantly improved plant growth, and total Cd and Pb amounts of S. nigrum, both CA and PGA significantly increased the shoot Cd and Pb concentrations. However, only PGA significantly increased the root Pb concentration. CA and PGA application promoted the bioavailability of Cd and Pb in rhizosphere soils and their translocations from roots to shoots in S. nigrum. Both CA and PGA increased the phytoextraction efficiency of Cd and Pb in S. nigrum plants, and the PGA for Cd and Pb phytoextraction was more effective than CA. Our findings demonstrate that the biodegradable chelator PGA has great potential for enhancing phytoextraction from compound Cd-Pb contaminated soils, suggesting that biodegradable chelator-assisted phytoextraction with (hyper)accumulator is strongly recommended in severely contaminated sites.


Assuntos
Metais Pesados , Poluentes do Solo , Solanum nigrum , Cádmio/análise , Ácido Glutâmico , Chumbo , Ácido Cítrico , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Quelantes/farmacologia , Solo
4.
Environ Sci Pollut Res Int ; 27(32): 40434-40442, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32666460

RESUMO

Conventional chemical soil amendments and novel material biochars have been widely reported for the immobilisation of cadmium (Cd) and lead (Pb) in polluted soil. However, information regarding their comparative effectiveness is poor. In the present study, rice husk biochar (RHB) was compared with two chemical soil amendments including hydroxyapatite (HAP) and hydrated lime (HDL) for their effectiveness to enhance plant growth and the reduction of Cd uptake and translocation by Triticum aestivum L. grown in heavy-metal-polluted soil. Compared with control and two chemical soil amendments, RHB rapidly improved wheat growth. The HAP, HDL, and RHB treated plants retained Cd and Pb in roots and restricted their translocation. The RHB treatment had the best effect on growth, yield promotion and the reduction of Cd and Pb in wheat grain. Furthermore, the soils treated with RHB and HAP showed lower DTPA-extracted Cd concentrations, and the maximum reduction was observed in HAP-amended soil. However, the DTPA-extracted Pb concentration was not significantly decreased after the application of two chemical soil amendments for 40 days; the maximum reduction was found in soil treated with RHB for 80 days. In all treatments, Cd in post-harvest soil was mainly present in exchangeable, carbonate bound, and Fe-Mn oxide Cd, while the dominant chemical form of Pb was Fe-Mn oxide Pb. Three soil amendments application decreased exchangeable and organic bound- Cd and Pb levels. HAP and RHB displayed significantly immobilisation for soil Cd and reduced translocation of heavy metal as well as its availability in soil, but the HAP had significant inhibition on growth of wheat in contaminated soil. Therefore, RHB shows a promising potential for the reduction of Cd and Pb bioaccumulation in grains from wheat grown on heavy-metal-polluted soils.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Chumbo , Solo , Poluentes do Solo/análise , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA