Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 111: 109176, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220527

RESUMO

One-carbon metabolism is a key metabolic network that integrates nutritional signals with embryonic development. However, the response of one-carbon metabolism to methionine status and the regulatory mechanisms are poorly understood. Herein, we found that methionine supplementation during pregnancy significantly increased fetal number and average fetal weight. In addition, methionine modulated one-carbon metabolism primarily through 2 metabolic enzymes, cystathionine ß-synthase (CBS) and methionine adenosyltransferase 2A (MAT2A), which were significantly increased in fetal liver tissues and porcine trophoblast (pTr) cells in response to proper methionine supplementation. CBS and MAT2A overexpression enhanced the DNA synthesis in pTr cells. More importantly, we identified a transcription factor, DNA damage-inducible transcript 3 (DDIT3), that was the primary regulator of CBS and MAT2A, which bound directly to promoters and negatively regulated the expression of CBS and MAT2A. Taken together, our findings identified that DDIT3 targeting CBS and MAT2A was a novel regulatory pathway that mediated cellular one-carbon metabolism in response to methionine signal and provided promising targets to improve pregnancy health.


Assuntos
Metionina Adenosiltransferase , Metionina , Suínos , Animais , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Desenvolvimento Embrionário , Regiões Promotoras Genéticas , Racemetionina , Carbono
2.
Nutrients ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297089

RESUMO

Fatty acids play important roles in maintaining ovarian steroidogenesis and endometrial receptivity. Porcine primary ovarian granulosa cells (PGCs) and endometrial epithelial cells (PEECs) were treated with or without medium- and short-chain fatty acids (MSFAs) for 24 h. The mRNA abundance of genes was detected by fluorescence quantitative PCR. The hormone levels in the PGCs supernatant and the rate of adhesion of porcine trophoblast cells (pTrs) to PEECs were measured. Sows were fed diets with or without MSFAs supplementation during early gestation. The fecal and vaginal microbiomes were identified using 16S sequencing. Reproductive performance was recorded at parturition. MSFAs increased the mRNA abundance of genes involved in steroidogenesis, luteinization in PGCs and endometrial receptivity in PEECs (p < 0.05). The estrogen level in the PGC supernatant and the rate of adhesion increased (p < 0.05). Dietary supplementation with MSFAs increased serum estrogen levels and the total number of live piglets per litter (p < 0.01). Moreover, MSFAs reduced the fecal Trueperella abundance and vaginal Escherichia-Shigella and Clostridium_sensu_stricto_1 abundance. These data revealed that MSFAs improved pregnancy outcomes in sows by enhancing ovarian steroidogenesis and endometrial receptivity while limiting the abundance of several intestinal and vaginal pathogens at early stages of pregnancy.


Assuntos
Ração Animal , Resultado da Gravidez , Gravidez , Suínos , Animais , Feminino , Ração Animal/análise , Lactação , Suplementos Nutricionais/análise , Dieta/veterinária , Ácidos Graxos , Ácidos Graxos Voláteis , RNA Mensageiro , Estrogênios
3.
J Sci Food Agric ; 102(12): 5495-5501, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35355275

RESUMO

BACKGROUND: The INFOGEST model is a standardized general in vitro digestion study, but it cannot accurately simulate the fatty acid release process of lipids in the stomach and small intestine. In this study, the internationally universal INFOGEST 2019 was used as the basic model and flaxseed oil emulsion was used as the research object. In various improvement models, the effect of fatty acid release rate on the oxidation stability of flaxseed oil was assessed by adding rabbit stomach extract and changing the order of bile salts addition. RESULTS: With the presence of rabbit gastric extract, flaxseed oil emulsion flocculation and coalescence in stomach were reduced, and the absolute value of ζ-potential increased. Moreover, the release rate of fatty acids in the small intestine increased by 12.14%. The amount of lipid oxidation product (i.e. hexanal) in the gastric and intestinal phases increased by 0.08 ppb. In addition, the fatty acid release rate in the small intestine phase increased by 5.85% and the hexanal content increased by 0.011 ppb in the digestion model of adding bile salts before adjusting the pH in the small intestine phase compared with the model of adjusting the pH first and then adding bile salts. CONCLUSION: The results obtained from this study will contribute to finding the most suitable static digestion model for simulating digestion and oxidation of lipid during lipid gastrointestinal digestion. © 2022 Society of Chemical Industry.


Assuntos
Digestão , Óleo de Semente do Linho , Animais , Ácidos e Sais Biliares , Emulsões/química , Ácidos Graxos , Óleo de Semente do Linho/química , Extratos Vegetais , Coelhos
4.
Oncol Lett ; 21(5): 391, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33777214

RESUMO

Osteosarcoma is the most common malignant bone tumor in adolescents and young adults, and identifying biomarkers for prognosis and therapy is necessary. Bone morphogenetic protein receptor 2 (BMPR2) is involved in various cellular functions, including cell adhesion, proliferation and invasion, inflammation, apoptosis and metastatic spread. However, the correlation between BMPR2 expression levels and prognosis and tumor-infiltrating immune cells in osteosarcoma is not well understood. In the present study, the expression level of BMPR2 was investigated using the Oncomine and R2 databases. The association between the expression level of BMPR2 and the clinical prognosis of patients with cancer was analyzed using the R2 database. The relationship between the expression level of BMPR2 and immune cell infiltration in the stroma of osteosarcoma was assessed using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT. The correlations between BMPR2 expression level and infiltrated immune cell gene marker sets in osteosarcoma were validated in the TIMER and R2 databases. Analysis of a cohort of patients with osteosarcoma revealed that BMPR2 expression was significantly higher in osteosarcoma compared with in normal tissue and was correlated with poor prognosis. M0 macrophages, M2 macrophages, resting mast, γ δ T and CD8+ T cells were the top five immune cells with the highest degrees of infiltration in osteosarcoma. In addition, BMPR2 expression level showed a significant negative correlation with the gene markers of CD8+ T cells, monocytes and M2 macrophages. Low levels of infiltrating CD8+ T cells, monocytes or M2 macrophages in osteosarcoma was significantly associated with poor survival. These data suggested that CD8+ T cells, monocytes and M2 macrophages play significant roles in the establishment of the immune microenvironment of osteosarcoma. High BMPR2 expression was associated with poor prognosis and low infiltration of CD8+ T cells, monocytes and M2 macrophages in osteosarcoma. Hence, BMPR2 can be considered a biomarker of the immune infiltration, metastasis and prognosis of osteosarcoma.

5.
Cell Prolif ; 54(1): e12950, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33179842

RESUMO

OBJECTIVES: Early pregnancy loss is a major clinical concern in animal and human reproduction, which is largely influenced by embryo implantation. The importance of methionine for embryo implantation is widely neglected. MATERIALS AND METHODS: We performed a series of experiments with primiparous rats fed diets containing different levels of methionine during early pregnancy to investigate the role of methionine in embryonic implantation and pregnancy outcomes, and used them to perform in vivo metabolic assessments and in vitro uterine explant culture. In addition, through transcriptome analysis and silencing the expression of cystathionine ß-synthase (CBS, the key enzyme in transsulfuration pathway) and cell adhesion assay, we measured signalling within Ishikawa, pTr and JAR cells. RESULTS: We determined the relevance and underlying mechanism of methionine on embryo implantation. We showed that methionine deprivation sharply decreased embryo implantation sites, expression of CBS and transsulfuration pathway end products, which were reversed by maternal methionine supplementation during early pregnancy. Moreover, we found CBS improved methionine-mediated cell proliferation and DNA synthesis by CBS inhibition or interference. In addition, transcriptome analysis also revealed that CBS influenced the signalling pathway-associated cell proliferation and DNA synthesis, as well as a correlation between CBS and methionine adenosyltransferase 2A (MAT2A), implying that MAT2A was possibly involved in cell proliferation and DNA synthesis. Further analysis revealed that MAT2A influenced S-adenosylmethionine receptor SAMTOR expression, and SAMTOR activated mTORC1 and its downstream S6K1 and CAD, ultimately enhancing DNA synthesis in the embryo and uterus. CONCLUSIONS: Taken together, these studies demonstrate that CBS and MAT2A improve methionine-mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Cistationina beta-Sintase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina Adenosiltransferase/metabolismo , Metionina/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Células Cultivadas , DNA/biossíntese , Feminino , Humanos , Metionina/análogos & derivados , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA