Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731290

RESUMO

Streptococcus suis (S. suis) is a zoonotic pathogen with a global distribution, which causes serious diseases in both humans and animals and economic losses in the swine industry. As antibiotic resistance increases, there is an urgent imperative to explore novel antibacterial alternatives. In the present study, we selected the anticancer drug 5-fluorouracil (5-FU) approved by the Food and Drug Administration (FDA) as a candidate drug to treat S. suis infections. The results showed that various pathogens, especially S. suis, are more sensitive to 5-FU. Moreover, the cytotoxicity of 5-FU is relatively low. Extensive in vitro assays demonstrated the pronounced bacteriostatic and bactericidal efficacy of 5-FU against susceptible and multidrug-resistant S. suis strains. Its mechanisms of action include damage to the bacterial cell walls and membranes, resulting in the leakage of intracellular components, and the inhibition of thymidylate synthase (TS), leading to a depletion of deoxythymidine triphosphate (dTTP) pools, ultimately causing thymine-less death and lethal DNA damage in bacteria. Gene-knockout experiments further showed that 5-FU played a role by inhibiting the thyA gene-encoding thymidine synthase. Finally, we determined that S. suis infections can be alleviated by 5-FU in the mouse infection model. This study emphasizes the antibacterial potential of 5-FU against S. suis and provides evidence for its targeting of bacterial membrane damage and DNA damage. In summary, 5-FU can control S. suis infection and is expected to become a new alternative to antibiotics.

2.
Int J Antimicrob Agents ; 62(6): 106996, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788717

RESUMO

BACKGROUND: Streptococcus suis is an important zoonotic pathogen that often causes biofilm-associated infection. Bacterial biofilm-dependent infection is associated with enhanced drug resistance, making it difficult to eradicate. Novel therapeutic approaches are required urgently to treat infections associated with S. suis biofilm. This study aimed to investigate the effects and mechanisms of methyl anthranilate (MA) on S. suis biofilm. METHODS: The effect of MA on S. suis biofilm was determined using the crystal violet method, and the microstructure of the biofilm was observed by electron microscopy. The effects on capsular polysaccharides were determined using the phenol-sulphuric acid method and high-performance liquid chromatography. Adhesion and antiphagocytosis properties of S. suis were detected via cell assays. Molecular docking, molecular dynamics simulation and enzyme activity inhibition assays were used to further explore the effect of MA on AI-2 quorum sensing (QS) of S. suis. Finally, the therapeutic effect of MA was investigated using a mouse infection model. RESULTS: MA destroyed the structure of S. suis biofilm, hindered biofilm formation, and reduced the synthesis of capsular polysaccharides significantly, which further weakened the adhesion and antiphagocytosis ability of S. suis. MA had a docking effect and binding site (SER76 and ASP197) similar to S-adenosylhomocysteine (SAH). Further analysis showed that MA competitively bound 5'-methyladenosine/S-adenosine homocysteine nucleosidase with SAH to interfere with AI-2 QS. In a mouse model, MA reduced the bacterial burden and inflammatory infiltrates effectively. CONCLUSION: This study revealed the antibiofilm effects of MA, and highlighted its potential as a QS inhibitor against S. suis infection.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Simulação de Acoplamento Molecular , Biofilmes , Polissacarídeos , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA