Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Leukemia ; 36(12): 2784-2792, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307485

RESUMO

Current dogma is that there exists a hematopoietic pluripotent stem cell, resident in the marrow, which is quiescent, but with tremendous proliferative and differentiative potential. Furthermore, the hematopoietic system is essentially hierarchical with progressive differentiation from the pluripotent stem cells to different classes of hematopoietic cells. However, results summarized here indicate that the marrow pluripotent hematopoietic stem cell is actively cycling and thus continually changing phenotype. As it progresses through cell cycle differentiation potential changes as illustrated by sequential changes in surface expression of B220 and GR-1 epitopes. Further data indicated that the potential of purified hematopoietic stem cells extends to multiple other non-hematopoietic cells. It appears that marrow stem cells will give rise to epithelial pulmonary cells at certain points in cell cycle. Thus, it appears that the marrow "hematopoietic" stem cell is also a stem cell for other non-hematopoietic tissues. These observations give rise to the concept of a universal stem cell. The marrow stem cell is not limited to hematopoiesis and its differentiation potential continually changes as it transits cell cycle. Thus, there is a universal stem cell in the marrow which alters its differentiation potential as it progresses through cell cycle. This potential is expressed when it resides in tissues compatible with its differentiation potential, at a particular point in cell cycle transit, or when it interacts with vesicles from that tissue.


Assuntos
Células da Medula Óssea , Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Hematopoese , Diferenciação Celular , Ciclo Celular
2.
Stem Cell Rev Rep ; 18(7): 2351-2364, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35503199

RESUMO

Hematopoietic stem cells express differentiation markers B220 and Gr1 and are proliferative. We have shown that the expression of these entities changes with cell cycle passage. Overall, we conclude that primitive hematopoietic stem cells alter their differentiation potential with cell cycle progression. Murine derived long-term hematopoietic stem cells (LT-HSC) are cycling and thus always changing phenotype. Here we show that over one half of marrow LT-HSC are in the population expressing differentiation epitopes and that B220 and Gr-1 positive populations are replete with LT-HSC after a single FACS separation but if subjected to a second separation these cells no longer contain LT-HSC. However, with second separated cells there is a population appearing that is B220 negative and replete with cycling c-Kit, Sca-1 CD150 positive LT-HSC. There is a 3-4 h interval between the first and second B220 or GR-1 FACS separation during which the stem cells continue to cycle. Thus, the LT-HSC have lost B220 or GR-1 expression as the cells progress through cell cycle, although they have maintained the c-kit, Sca-1 and CD150 stem cells markers over this time interval. These data indicate that cycling stem cells express differentiation epitopes and alter their differentiation potential with cell cycle passage.


Assuntos
Antígenos de Diferenciação , Células-Tronco Hematopoéticas , Animais , Ciclo Celular , Diferenciação Celular/genética , Epitopos , Camundongos
3.
Cardiovasc Res ; 118(16): 3211-3224, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35018410

RESUMO

AIMS: Pulmonary arterial hypertension (PAH) is a fatal disease without a cure. Previously, we found that transcription factor RUNX1-dependent haematopoietic transformation of endothelial progenitor cells may contribute to the pathogenesis of PAH. However, the therapeutic potential of RUNX1 inhibition to reverse established PAH remains unknown. In the current study, we aimed to determine whether RUNX1 inhibition was sufficient to reverse Sugen/hypoxia (SuHx)-induced pulmonary hypertension (PH) in rats. We also aimed to demonstrate possible mechanisms involved. METHODS AND RESULTS: We administered a small molecule specific RUNX1 inhibitor Ro5-3335 before, during, and after the development of SuHx-PH in rats to investigate its therapeutic potential. We quantified lung macrophage recruitment and activation in vivo and in vitro in the presence or absence of the RUNX1 inhibitor. We generated conditional VE-cadherin-CreERT2; ZsGreen mice for labelling adult endothelium and lineage tracing in the SuHx-PH model. We also generated conditional Cdh5-CreERT2; Runx1(flox/flox) mice to delete Runx1 gene in adult endothelium and LysM-Cre; Runx1(flox/flox) mice to delete Runx1 gene in cells of myeloid lineage, and then subjected these mice to SuHx-PH induction. RUNX1 inhibition in vivo effectively prevented the development, blocked the progression, and reversed established SuHx-induced PH in rats. RUNX1 inhibition significantly dampened lung macrophage recruitment and activation. Furthermore, lineage tracing with the inducible VE-cadherin-CreERT2; ZsGreen mice demonstrated that a RUNX1-dependent endothelial to haematopoietic transformation occurred during the development of SuHx-PH. Finally, tissue-specific deletion of Runx1 gene either in adult endothelium or in cells of myeloid lineage prevented the mice from developing SuHx-PH, suggesting that RUNX1 is required for the development of PH. CONCLUSION: By blocking RUNX1-dependent endothelial to haematopoietic transformation and pulmonary macrophage recruitment and activation, targeting RUNX1 may be as a novel treatment modality for pulmonary arterial hypertension.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar Primária Familiar , Hipóxia/complicações , Artéria Pulmonar , Modelos Animais de Doenças
4.
FASEB J ; 35(1): e21106, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165997

RESUMO

The protein tyrosine phosphatase SHP2, encoded by PTPN11, is ubiquitously expressed and essential for the development and/or maintenance of multiple tissues and organs. SHP2 is involved in gastrointestinal (GI) epithelium development and homeostasis, but the underlying mechanisms remain elusive. While studying SHP2's role in skeletal development, we made osteoblast-specific SHP2 deficient mice using Osterix (Osx)-Cre as a driver to excise Ptpn11 floxed alleles. Phenotypic characterization of these SHP2 mutants unexpectedly revealed a critical role of SHP2 in GI biology. Mice lacking SHP2 in Osx+ cells developed a fatal GI pathology with dramatic villus hypoplasia. OSTERIX, an OB-specific zinc finger-containing transcription factor is for the first time found to be expressed in GI crypt cells, and SHP2 expression in the crypt Osx+ cells is critical for self-renewal and proliferation. Further, immunostaining revealed the colocalization of OSTERIX with OLFM4 and LGR5, two bona fide GI stem cell markers, at the crypt cells. Furthermore, OSTERIX expression is found to be associated with GI malignancies. Knockdown of SHP2 expression had no apparent influence on the relative numbers of enterocytes, goblet cells or Paneth cells. Given SHP2's key regulatory role in OB differentiation, our studies suggest that OSTERIX and SHP2 are indispensable for gut homeostasis, analogous to SOX9's dual role as a master regulator of cartilage and an important regulator of crypt stem cell biology. Our findings also provide a foundation for new avenues of inquiry into GI stem cell biology and of OSTERIX's therapeutic and diagnostic potential.


Assuntos
Proliferação de Células , Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Fator de Transcrição Sp7/metabolismo , Células-Tronco , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Fator de Transcrição Sp7/genética
5.
Aging (Albany NY) ; 12(24): 25939-25955, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33378745

RESUMO

Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) ensuring homeostasis of blood production and immune response throughout life. Sex differences in immunocompetence and mortality are well-documented in humans. However, whether HSPCs behave dimorphically between sexes during aging remains unknown. Here, we show that a significant expansion of BM-derived HSPCs occurs in the middle age of female but in the old age of male mice. We then show that a decline of HSPCs in male mice, as indicated by the expression levels of select hematopoietic genes, occurs much earlier in the aging process than that in female mice. Sex-mismatched heterochronic BM transplantations indicate that the middle-aged female BM microenvironment plays a pivotal role in sustaining hematopoietic gene expression during aging. Furthermore, a higher concentration of the pituitary sex hormone follicle-stimulating hormone (FSH) in the serum and a concomitant higher expression of its receptor on HSPCs in the middle-aged and old female mice than age-matched male mice, suggests that FSH may contribute to the sexual dimorphism in aging hematopoiesis. Our study reveals that HSPCs in the BM niches are possibly regulated in a sex-specific manner and influenced differently by sex hormones during aging hematopoiesis.


Assuntos
Envelhecimento/fisiologia , Hormônio Foliculoestimulante/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Receptores do FSH/metabolismo , Caracteres Sexuais , Animais , Antígenos Ly/metabolismo , Medula Óssea , Transplante de Medula Óssea , Linhagem da Célula , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Nicho de Células-Tronco
6.
Am J Respir Cell Mol Biol ; 62(5): 577-587, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721618

RESUMO

Mesenchymal stem cell extracellular vesicles attenuate pulmonary hypertension, but their ability to reverse established disease in larger animal models and the duration and mechanism(s) of their effect are unknown. We sought to determine the efficacy and mechanism of mesenchymal stem cells' extracellular vesicles in attenuating pulmonary hypertension in rats with Sugen/hypoxia-induced pulmonary hypertension. Male rats were treated with mesenchymal stem cell extracellular vesicles or an equal volume of saline vehicle by tail vein injection before or after subcutaneous injection of Sugen 5416 and exposure to 3 weeks of hypoxia. Pulmonary hypertension was assessed by right ventricular systolic pressure, right ventricular weight to left ventricle + septum weight, and muscularization of peripheral pulmonary vessels. Immunohistochemistry was used to measure macrophage activation state and recruitment to lung. Mesenchymal stem cell extracellular vesicles injected before or after induction of pulmonary hypertension normalized right ventricular pressure and reduced right ventricular hypertrophy and muscularization of peripheral pulmonary vessels. The effect was consistent over a range of doses and dosing intervals and was associated with lower numbers of lung macrophages, a higher ratio of alternatively to classically activated macrophages (M2/M1 = 2.00 ± 0.14 vs. 1.09 ± 0.11; P < 0.01), and increased numbers of peripheral blood vessels (11.8 ± 0.66 vs. 6.9 ± 0.57 vessels per field; P < 0.001). Mesenchymal stem cell extracellular vesicles are effective at preventing and reversing pulmonary hypertension in Sugen/hypoxia pulmonary hypertension and may offer a new approach for the treatment of pulmonary arterial hypertension.


Assuntos
Vesículas Extracelulares/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Hipóxia/complicações , Indóis/efeitos adversos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Pirróis/efeitos adversos , Animais , Fibroblastos/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Ativação de Macrófagos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso/patologia , Neovascularização Fisiológica , Ratos Sprague-Dawley , Remodelação Vascular , Fator de von Willebrand/metabolismo
7.
Clin Lymphoma Myeloma Leuk ; 19(9): 593-597, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31262666

RESUMO

BACKGROUND: Myelofibrosis (MF), a rare disorder characterized by bone marrow fibrosis, has been implicated as a cause of pulmonary hypertension (PH). To date, studies examining this association have not looked at the impact of PH on survival in MF. We examined the relationship between MF and PH by echocardiogram (echo) using a retrospective patient database and examined the influence of PH on overall survival. PATIENTS AND METHODS: In this single-center retrospective chart review, we identified 65 patients with biopsy-proven primary and secondary MF, 31 of whom underwent transthoracic echo. After accounting for chronic obstructive pulmonary disease and left-sided or valvular heart dysfunction, which excluded 6 patients, we identified 14 patients (56%) who had echo evidence of group 5 PH (ie, PH due to unclear or multifactorial mechanisms), 8 with primary MF and 6 with secondary MF. MF patients with PH trended toward being predominantly female, being older, and less often having constitutional symptoms compared to the non-PH cohort. RESULTS: There was no effect of the presence of PH on overall survival in the entire MF cohort or in any subgroup analyzed, including primary MF versus secondary MF and primary MF intermediate risk patients. CONCLUSION: Given the high prevalence of MF-associated PH, there may be a larger role for routine echo screening in MF patients. Further, the underlying association between PH and MF may signify an endothelial plasticity or increased telomerase activity as part of the pathogenesis of MF.


Assuntos
Hipertensão Pulmonar/epidemiologia , Hipertensão Pulmonar/etiologia , Mielofibrose Primária/complicações , Mielofibrose Primária/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Biópsia , Ecocardiografia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/mortalidade , Masculino , Pessoa de Meia-Idade , Prevalência , Mielofibrose Primária/diagnóstico , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida
8.
Int J Mol Sci ; 20(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091699

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) possess pro-regenerative potential in different animal models with renal injury. EVs contain different molecules, including proteins, lipids and nucleic acids. Among the shuttled molecules, miRNAs have a relevant role in the pro-regenerative effects of EVs and are a promising target for therapeutic interventions. The aim of this study was to increase the content of specific miRNAs in EVs that are known to be involved in the pro-regenerative effect of EVs, and to assess the capacity of modified EVs to contribute to renal regeneration in in vivo models with acute kidney injuries. To this purpose, MSCs were transiently transfected with specific miRNA mimics by electroporation. Molecular analyses showed that, after transfection, MSCs and derived EVs were efficiently enriched in the selected miRNAs. In vitro and in vivo experiments indicated that EVs engineered with miRNAs maintained their pro-regenerative effects. Of relevance, engineered EVs were more effective than EVs derived from naïve MSCs when used at suboptimal doses. This suggests the potential use of a low amount of EVs (82.5 × 106) to obtain the renal regenerative effect.


Assuntos
Injúria Renal Aguda/terapia , Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/genética , Terapêutica com RNAi/métodos , Regeneração , Animais , Células Cultivadas , Vesículas Extracelulares/genética , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos SCID , MicroRNAs/metabolismo
9.
J Cell Physiol ; 234(11): 21193-21198, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012111

RESUMO

Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling and ultimately death. Two rodent models of PH include treatment with monocrotaline or exposure to a vascular endothelial growth factor receptor inhibitor and hypoxia. Studies in these models indicated that damaged lung cells evolve extracellular vesicles which induce production of progenitors that travel back to the lung and induce PH. A study in patients with pulmonary myelofibrosis and PH indicated that 100 cGy lung irradiation could remit both diseases. Previous studies indicated that murine progenitors were radiosensitive at very low doses, suggesting that 100 cGy treatment of mice with induced PH might be an effective PH therapy. Our hypothesis is that the elimination of the PH-inducing marrow cells by low dose irradiation would remove the cellular influences creating PH. Here we show that low dose whole-body irradiation can both prevent and reverse established PH in both rodent models of PH.


Assuntos
Hipertensão Pulmonar , Irradiação Corporal Total , Animais , Células da Medula Óssea/efeitos da radiação , Camundongos , Radioterapia
11.
PLoS One ; 13(11): e0207444, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475846

RESUMO

Extracellular vesicles (EVs) are important mediators of intercellular communication and have been implicated in myriad physiologic and pathologic processes within the hematopoietic system. Numerous factors influence the ability of EVs to communicate with target marrow cells, but little is known about how circadian oscillations alter EV function. In order to explore the effects of daily rhythms on EV-mediated intercellular communication, we used a well-established model of lung-derived EV modulation of the marrow cell transcriptome. In this model, co-culture of whole bone marrow cells (WBM) with lung-derived EVs induces expression of pulmonary specific mRNAs in the target WBM. To determine if daily rhythms play a role in this phenotype modulation, C57BL/6 mice were entrained in 12-hour light/12-hour dark boxes. Lungs harvested at discrete time-points throughout the 24-hour cycle were co-cultured across a cell-impermeable membrane with murine WBM. Alternatively, WBM harvested at discrete time-points was co-cultured with lung-derived EVs. Target WBM was collected 24hrs after co-culture and analyzed for the presence of pulmonary specific mRNA levels by RT-PCR. In both cases, there were clear time-dependent variations in the patterns of pulmonary specific mRNA levels when either the daily time-point of the lung donor or the daily time-point of the recipient marrow cells was altered. In general, WBM had peak pulmonary-specific mRNA levels when exposed to lung harvested at Zeitgeber time (ZT) 4 and ZT 16 (ZT 0 defined as the time of lights on, ZT 12 defined as the time of lights off), and was most susceptible to lung-derived EV modulation when target marrow itself was harvested at ZT 8- ZT 12. We found increased uptake of EVs when the time-point of the receptor WBM was between ZT 20 -ZT 24, suggesting that the time of day-dependent changes in transcriptome modulation by the EVs were not due simply to differential EV uptake. Based on these data, we conclude that circadian rhythms can modulate EV-mediated intercellular communication.


Assuntos
Células da Medula Óssea/metabolismo , Ritmo Circadiano , Vesículas Extracelulares/metabolismo , Pulmão/metabolismo , RNA Mensageiro/biossíntese , Transcriptoma , Animais , Células da Medula Óssea/citologia , Masculino , Camundongos
12.
Blood ; 132(19): 2053-2066, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30213875

RESUMO

Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPN-like phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34+ hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Medula Óssea/patologia , Proteínas do Citoesqueleto/genética , Deleção de Genes , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Animais , Medula Óssea/metabolismo , Autorrenovação Celular , Células Cultivadas , Regulação para Baixo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Mielofibrose Primária/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
13.
JCI Insight ; 3(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618654

RESUMO

Replication competent HIV-1 persists in a subpopulation of CD4+ T lymphocytes despite prolonged antiretroviral treatment. This residual reservoir of infected cells harbors transcriptionally silent provirus capable of reigniting productive infection upon discontinuation of antiretroviral therapy. Certain classes of drugs can activate latent virus but not at levels that lead to reductions in HIV-1 reservoir size in vivo. Here, we show the utility of CD4+ receptor targeting exosomes as an HIV-1 latency reversal agent (LRA). We engineered human cellular exosomes to express HIV-1 Tat, a protein that is a potent transactivator of viral transcription. Preparations of exosomal Tat-activated HIV-1 in primary, resting CD4+ T lymphocytes isolated from antiretroviral-treated individuals with prolonged periods of viral suppression and led to the production of replication competent HIV-1. Furthermore, exosomal Tat increased the potency of selected LRA by over 30-fold in terms of HIV-1 mRNA expression, thereby establishing it as a potentially new class of biologic product with possible combinatorial utility in targeting latent HIV-1.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Portadores de Fármacos , Infecções por HIV/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Produtos do Gene tat do Vírus da Imunodeficiência Humana/administração & dosagem , Adulto , Idoso , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade/métodos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Engenharia Celular/métodos , Clonagem Molecular , Exossomos , Feminino , Células HEK293 , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Engenharia de Proteínas/métodos , Proteínas Proto-Oncogênicas c-myc/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Recombinantes de Fusão/genética , Transfecção , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
14.
Clin Lymphoma Myeloma Leuk ; 18(3): 204-209, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433979

RESUMO

BACKGROUND: Induction chemotherapy for acute myeloid leukemia (AML) is based on the "7+3" cytarabine/anthracycline regimen. A nonhypocellular day 14 (D14) bone marrow sample with a blast count > 5% to 10% is suggestive of residual leukemia, for which a second course of induction chemotherapy has been recommended. Although the prognostic value of D14 bone marrow findings has been established, its use as a decision point is controversial because the benefit of repeat induction has been questioned. PATIENTS AND METHODS: In the present single-center retrospective study of 113 patients with newly diagnosed AML, we evaluated the role of cellularity on the clinical outcomes of patients with residual morphologic leukemia (blasts ≥ 5%). Among 64 patients with D14 bone marrow samples, 31 had residual morphologic leukemia. RESULTS: The complete remission (CR) rates were greater for the hypocellular (11 of 16) than for the nonhypocellular (4 of 15) patients (P = .03). The median overall survival (OS) for the hypocellular D14 patients was longer than that for the nonhypocellular patients (17 vs. 8 months; P = .02). No significant difference between the receipt of reinduction therapy and CR or OS was found on logistic or survival model analysis. The specificity for residual leukemia on D14 bone marrow samples was better for cellularity ≥ 20% and blasts ≥ 20% than for blasts ≥ 5%. CONCLUSION: The results of our study have shown that patients with < 20% cellularity and < 20% blasts on the D14 bone marrow assessment should continue observation until recovery rather than receive additional immediate therapy.


Assuntos
Contagem de Células Sanguíneas/métodos , Quimioterapia de Indução/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Prognóstico , Estudos Retrospectivos , Fatores de Tempo
15.
Cardiovasc Res ; 113(13): 1560-1573, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016733

RESUMO

AIMS: The pathogenic mechanisms of pulmonary arterial hypertension (PAH) remain unclear, but involve dysfunctional endothelial cells (ECs), dysregulated immunity and inflammation in the lung. We hypothesize that a developmental process called endothelial to haematopoietic transition (EHT) contributes to the pathogenesis of pulmonary hypertension (PH). We sought to determine the role of EHT in mouse models of PH, to characterize specific cell types involved in this process, and to identify potential therapeutic targets to prevent disease progression. METHODS AND RESULTS: When transgenic mice with fluorescence protein ZsGreen-labelled ECs were treated with Sugen/hypoxia (Su/Hx) combination to induce PH, the percentage of ZsGreen+ haematopoietic cells in the peripheral blood, primarily of myeloid lineage, significantly increased. This occurrence coincided with the depletion of bone marrow (BM) ZsGreen+ c-kit+ CD45- endothelial progenitor cells (EPCs), which could be detected accumulating in the lung upon PH-induction. Quantitative RT-PCR based gene array analysis showed that key transcription factors driving haematopoiesis were expressed in these EPCs. When transplanted into lethally irradiated recipient mice, the BM-derived EPCs exhibited long-term engraftment and haematopoietic differentiation capability, indicating these EPCs are haemogenic in nature. Specific inhibition of the critical haematopoietic transcription factor Runx1 blocked the EHT process in vivo, prevented egress of the BM EPCs and ultimately attenuated PH progression in Su/Hx- as well as in monocrotaline-induced PH in mice. Thus, myeloid-skewed EHT promotes the development of PH and inhibition of this process prevents disease progression in mouse models of PH. Furthermore, high levels of Runx1 expression were found in circulating CD34+ CD133+ EPCs isolated from peripheral blood of patients with PH, supporting the clinical relevance of our proposed mechanism of EHT. CONCLUSION: EHT contributes to the pathogenesis of PAH. The transcription factor Runx1 may be a novel therapeutic target for the treatment of PAH.


Assuntos
Pressão Arterial , Linhagem da Célula , Transdiferenciação Celular , Células Progenitoras Endoteliais/patologia , Células-Tronco Hematopoéticas/patologia , Hipertensão Pulmonar/patologia , Artéria Pulmonar/patologia , Antígeno AC133/sangue , Animais , Antígenos CD34/metabolismo , Estudos de Casos e Controles , Subunidade alfa 2 de Fator de Ligação ao Core/sangue , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Antígenos Comuns de Leucócito/metabolismo , Camundongos Transgênicos , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia
16.
Stem Cells Transl Med ; 6(7): 1595-1606, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28474513

RESUMO

The role of bone marrow (BM) cells in modulating pulmonary hypertensive responses is not well understood. Determine if BM-derived endothelial progenitor cells (EPCs) induce pulmonary hypertension (PH) and if this is attenuated by mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs). Three BM populations were studied: (a) BM from vehicle and monocrotaline (MCT)-treated mice (PH induction), (b) BM from vehicle-, MCT-treated mice that received MSC-EV infusion after vehicle, MCT treatment (PH reversal, in vivo), (c) BM from vehicle-, MCT-treated mice cultured with MSC-EVs (PH reversal, in vitro). BM was separated into EPCs (sca-1+/c-kit+/VEGFR2+) and non-EPCs (sca-1-/c-kit-/VEGFR2-) and transplanted into healthy mice. Right ventricular (RV) hypertrophy was assessed by RV-to-left ventricle+septum (RV/LV+S) ratio and pulmonary vascular remodeling by blood vessel wall thickness-to-diameter (WT/D) ratio. EPCs but not non-EPCs from mice with MCT-induced PH (MCT-PH) increased RV/LV+S, WT/D ratios in healthy mice (PH induction). EPCs from MCT-PH mice treated with MSC-EVs did not increase RV/LV+S, WT/D ratios in healthy mice (PH reversal, in vivo). Similarly, EPCs from MCT-PH mice treated with MSC-EVs pre-transplantation did not increase RV/LV+S, WT/D ratios in healthy mice (PH reversal, in vitro). MSC-EV infusion reversed increases in BM-EPCs and increased lung tissue expression of EPC genes and their receptors/ligands in MCT-PH mice. These findings suggest that the pulmonary hypertensive effects of BM are mediated by EPCs and those MSC-EVs attenuate these effects. These findings provide new insights into the pathogenesis of PH and offer a potential target for development of novel PH therapies. Stem Cells Translational Medicine 2017;6:1595-1606.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Vesículas Extracelulares/transplante , Hipertensão Pulmonar/terapia , Animais , Células Cultivadas , Hipertensão Pulmonar/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monocrotalina/toxicidade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Med Oncol ; 34(4): 65, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28332165

RESUMO

Microchimerism has generally been shown to protect against cancer (Gilmore et al. in Exp Hematol 36(9):1073-1077, 2008). The mechanism of how this occurs is an area of intense study, as it may lead to new cancer treatments. The leading theory is that microchimeric cells perform immune surveillance by directly fighting cancerous cells and that they also act as stem cells, repairing damaged tissue (Khosrotehrani et al. in JAMA 292:75-80, 2004). However, there is conflicting evidence to support this theory. Several small studies have found few microchimeric cells in tumor tissue (Gadi in Breast Cancer Res Treat 121(1):241-244, 2010; Cirello et al. in Int J Cancer 126:2874-2878, 2010), while another study contradicted these findings by showing microchimeric cells clustered around tumor tissue (O'Donoghue et al. in Reprod Biomed Online 16:382-390, 2008). To date, we have designed the largest and broadest study to investigate this question of whether microchimeric cells really do cluster at tumor tissue. We analyzed 245 samples from a broad range of cancer types. Using PCR for the male chromosome marker TSPY1, we identified only 12 out of 245 samples with microchimerism for a rate of 4.9% (95% confidence interval 2.2-7.6%). Five of these samples were confirmed using Y fluorescence in situ hybridization. This rate of 4.9% microchimerism is the lowest reported in any study. The low percentage of microchimerism observed in our broad study suggests that microchimeric cells do not invade tumors to fight off neoplasm.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Contagem de Células , Proteínas de Ciclo Celular/genética , Quimerismo , Feminino , Humanos , Hibridização in Situ Fluorescente , Neoplasias/imunologia
18.
Cardiovasc Res ; 110(3): 319-30, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26980205

RESUMO

AIMS: Extracellular vesicles (EVs) from mice with monocrotaline (MCT)-induced pulmonary hypertension (PH) induce PH in healthy mice, and the exosomes (EXO) fraction of EVs from mesenchymal stem cells (MSCs) can blunt the development of hypoxic PH. We sought to determine whether the EXO fraction of EVs is responsible for modulating pulmonary vascular responses and whether differences in EXO-miR content explains the differential effects of EXOs from MSCs and mice with MCT-PH. METHODS AND RESULTS: Plasma, lung EVs from MCT-PH, and control mice were divided into EXO (exosome), microvesicle (MV) fractions and injected into healthy mice. EVs from MSCs were divided into EXO, MV fractions and injected into MCT-treated mice. PH was assessed by right ventricle-to-left ventricle + septum (RV/LV + S) ratio and pulmonary arterial wall thickness-to-diameter (WT/D) ratio. miR microarray analyses were also performed on all EXO populations. EXOs but not MVs from MCT-injured mice increased RV/LV + S, WT/D ratios in healthy mice. MSC-EXOs prevented any increase in RV/LV + S, WT/D ratios when given at the time of MCT injection and reversed the increase in these ratios when given after MCT administration. EXOs from MCT-injured mice and patients with idiopathic pulmonary arterial hypertension (IPAH) contained increased levels of miRs-19b,-20a,-20b, and -145, whereas miRs isolated from MSC-EXOs had increased levels of anti-inflammatory, anti-proliferative miRs including miRs-34a,-122,-124, and -127. CONCLUSION: These findings suggest that circulating or MSC-EXOs may modulate pulmonary hypertensive effects based on their miR cargo. The ability of MSC-EXOs to reverse MCT-PH offers a promising potential target for new PAH therapies.


Assuntos
Exossomos/transplante , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Monocrotalina , Artéria Pulmonar/metabolismo , Remodelação Vascular , Animais , Estudos de Casos e Controles , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/transplante , Células Cultivadas , Modelos Animais de Doenças , Exossomos/genética , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Regulação da Expressão Gênica , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Artéria Pulmonar/fisiopatologia
19.
J Extracell Vesicles ; 4: 27575, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26320942

RESUMO

The NIH Extracellular RNA Communication Program's initiative on clinical utility of extracellular RNAs and therapeutic agents and developing scalable technologies is reviewed here. Background information and details of the projects are presented. The work has focused on modulation of target cell fate by extracellular vesicles (EVs) and RNA. Work on plant-derived vesicles is of intense interest, and non-mammalian sources of vesicles may represent a very promising source for different therapeutic approaches. Retro-viral-like particles are intriguing. Clearly, EVs share pathways with the assembly machinery of several other viruses, including human endogenous retrovirals (HERVs), and this convergence may explain the observation of viral-like particles containing viral proteins and nucleic acid in EVs. Dramatic effect on regeneration of damaged bone marrow, renal, pulmonary and cardiovascular tissue is demonstrated and discussed. These studies show restoration of injured cell function and the importance of heterogeneity of different vesicle populations. The potential for neural regeneration is explored, and the capacity to promote and reverse neoplasia by EV exposure is described. The tremendous clinical potential of EVs underlies many of these projects, and the importance of regulatory issues and the necessity of general manufacturing production (GMP) studies for eventual clinical trials are emphasized. Clinical trials are already being pursued and should expand dramatically in the near future.

20.
BMC Cancer ; 15: 571, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231887

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are secreted from many cells, carrying cargoes including proteins and nucleic acids. Research has shown that EVs play a role in a variety of biological processes including immunity, bone formation and recently they have been implicated in promotion of a metastatic phenotype. METHODS: EVs were isolated from HCT116 colon cancer cells, 1459 non-malignant colon fibroblast cells, and tumor and normal colon tissue from a patient sample. Co-cultures were performed with 1459 cells and malignant vesicles, as well as HCT116 cells and non-malignant vesicles. Malignant phenotype was measured using soft agar colony formation assay. Co-cultures were also analyzed for protein levels using mass spectrometry. The importance of 14-3-3 zeta/delta in transfer of malignant phenotype was explored using siRNA. Additionally, luciferase reporter assay was used to measure the transcriptional activity of NF-κB. RESULTS: This study demonstrates the ability of EVs derived from malignant colon cancer cell line and malignant patient tissue to induce the malignant phenotype in non-malignant colon cells. Similarly, EVs derived from non-malignant colon cell lines and normal patient tissue reversed the malignant phenotype of HCT116 cells. Cells expressing an EV-induced malignant phenotype showed increased transcriptional activity of NF-κB which was inhibited by the NF--κB inhibitor, BAY117082. We also demonstrate that knock down of 14-3-3 zeta/delta reduced anchorage-independent growth of HCT116 cells and 1459 cells co-cultured with HCT derived EVs. CONCLUSIONS: Evidence of EV-mediated induction of malignant phenotype, and reversal of malignant phenotype, provides rational basis for further study of the role of EVs in tumorigenesis. Identification of 14-3-3 zeta/delta as up-regulated in malignancy suggests its potential as a putative drug target for the treatment of colorectal cancer.


Assuntos
Proteínas 14-3-3/metabolismo , Colo/metabolismo , Neoplasias do Colo/patologia , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Colo/citologia , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Fenótipo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA