Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Hemasphere ; 8(5): e77, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716146

RESUMO

The mainstay of acute myeloid leukemia (AML) treatment still relies on traditional chemotherapy, with a survival rate of approximately 30% for patients under 65 years of age and as low as 5% for those beyond. This unfavorable prognosis primarily stems from frequent relapses, resistance to chemotherapy, and limited approved targeted therapies for specific AML subtypes. Around 70% of all AML cases show overexpression of the transcription factor HOXA9, which is associated with a poor prognosis, increased chemoresistance, and higher relapse rates. However, direct targeting of HOXA9 in a clinical setting has not been achieved yet. The dysregulation caused by the leukemic HOXA9 transcription factor primarily results from its binding activity to DNA, leading to differentiation blockade. Our previous investigations have identified two HOXA9/DNA binding competitors, namely DB1055 and DB818. We assessed their antileukemic effects in comparison to HOXA9 knockdown or cytarabine treatment. Using human AML cell models, DB1055 and DB818 induced in vitro cell growth reduction, death, differentiation, and common transcriptomic deregulation but did not impact human CD34+ bone marrow cells. Furthermore, DB1055 and DB818 exhibited potent antileukemic activities in a human THP-1 AML in vivo model, leading to the differentiation of monocytes into macrophages. In vitro assays also demonstrated the efficacy of DB1055 and DB818 against AML blasts from patients, with DB1055 successfully reducing leukemia burden in patient-derived xenografts in NSG immunodeficient mice. Our findings indicate that inhibiting HOXA9/DNA interaction using DNA ligands may offer a novel differentiation therapy for the future treatment of AML patients dependent on HOXA9.

2.
iScience ; 27(4): 109417, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510131

RESUMO

Multiple myeloma (MM) is an incurable hematological malignancy in which MYC alterations contribute to the malignant phenotype. Nevertheless, MYC lacks therapeutic druggability. Here, we leveraged large-scale loss-of-function screens and conducted a small molecule screen to identify genes and pathways with enhanced essentiality correlated with MYC expression. We reported a specific gene dependency in glutaminase (GLS1), essential for the viability and proliferation of MYC overexpressing cells. Conversely, the analysis of isogenic models, as well as cell lines dataset (CCLE) and patient datasets, revealed GLS1 as a non-oncogenic dependency in MYC-driven cells. We functionally delineated the differential modulation of glutamine to maintain mitochondrial function and cellular biosynthesis in MYC overexpressing cells. Furthermore, we observed that pharmaceutical inhibition of NAMPT selectively affects MYC upregulated cells. We demonstrate the effectiveness of combining GLS1 and NAMPT inhibitors, suggesting that targeting glutaminolysis and NAD synthesis may be a promising strategy to target MYC-driven MM.

3.
Blood Adv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513135

RESUMO

Mycosis fungoides (MF) is the most prevalent primary cutaneous T-cell lymphoma, with an indolent or aggressive course and poor survival. The pathogenesis of MF remains unclear, and prognostic factors in the early stages are not well-established. Here, we characterized the most recurrent genomic alterations using whole-exome sequencing of 67 samples from 48 patients from Lille University Hospital (France), including 18 sequential samples drawn across stages of the malignancy. Genomic data were analyzed on the Broad Institute's Terra bioinformatics platform. We found that gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), or mutations in JUNB and TET2 are associated with high-risk disease stages. Furthermore, gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), and del6q16.3 (TNFAIP3) are coupled with shorter survival. Del6q16.3 (TNFAIP3) was a risk factor for progression in low-risk patients. By analyzing the clonal heterogeneity and the clonal evolution of the cohort, we defined different phylogenetic pathways of the disease with acquisition of JUNB, gain10p15.1 (IL2RA and IL15RA), or del12p13.1 (CDKN1B) at progression. These results establish the genomics and clonality of MF and identify potential patients at risk of progression, independent of their clinical stage.

5.
J Interferon Cytokine Res ; 43(4): 164-172, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927129

RESUMO

Acute myeloid leukemia (AML) is characterized by an increased proliferation and loss of differentiation of hematopoietic myeloid progenitors or precursors. Studies performed in AML-affected patients revealed a T cell deficiency characterized by a reduced thymic output and peripheral functional abnormalities. To assess for the thymus function during AML, we used an AML mouse model and showed a drastic thymic atrophy. We observed a massive loss among double (CD4+CD8+- DP) and single positive (CD4+/8+- SP) thymocytes. We assessed for the expression of different actors of cell death signalling pathways by RT-qPCR or Western blotting. When comparing leukemic to control mice, there was a significant increase in the expression of Mlkl gene, phosphorylated MLKL and RIPK3 proteins, and tumor necrosis factor (TNF)-alpha receptors 1 on DP and SP thymocytes. These findings revealed a necroptosis cell death which was also observed in vitro when using cultured wild-type thymocytes and recombinant TNF-alpha protein. Thus, we demonstrated that TNF-alpha plays a deleterious role in thymic function during AML by contributing to extensive thymocytes' death.


Assuntos
Leucemia Mieloide Aguda , Timócitos , Camundongos , Animais , Timócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Necroptose , Transdução de Sinais , Leucemia Mieloide Aguda/metabolismo
7.
Sci Immunol ; 7(78): eade5686, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36459543

RESUMO

Cytokines interact with their receptors in the extracellular space to control immune responses. How the physicochemical properties of the extracellular space influence cytokine signaling is incompletely elucidated. Here, we show that the activity of interleukin-2 (IL-2), a cytokine critical to T cell immunity, is profoundly affected by pH, limiting IL-2 signaling within the acidic environment of tumors. Generation of lactic acid by tumors limits STAT5 activation, effector differentiation, and antitumor immunity by CD8+ T cells and renders high-dose IL-2 therapy poorly effective. Directed evolution enabled selection of a pH-selective IL-2 mutein (Switch-2). Switch-2 binds the IL-2 receptor subunit IL-2Rα with higher affinity, triggers STAT5 activation, and drives CD8+ T cell effector function more potently at acidic pH than at neutral pH. Consequently, high-dose Switch-2 therapy induces potent immune activation and tumor rejection with reduced on-target toxicity in normal tissues. Last, we show that sensitivity to pH is a generalizable property of a diverse range of cytokines with broad relevance to immunity and immunotherapy in healthy and diseased tissues.


Assuntos
Interleucina-2 , Neoplasias , Humanos , Fator de Transcrição STAT5 , Linfócitos T CD8-Positivos , Citocinas , Concentração de Íons de Hidrogênio
8.
Cancers (Basel) ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884428

RESUMO

Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have considerably improved the treatment of some cancers, but novel drugs, new combinations, and treatment modalities are needed to reinvigorate immunosurveillance in immune-refractory tumors. An option to elicit antitumor immunity against cancer consists of using approved and marketed drugs known for their capacity to modulate the expression and functioning of the PD-1/PD-L1 checkpoint. Here, we have reviewed several types of drugs known to alter the checkpoint, either directly via the blockade of PD-L1 or indirectly via an action on upstream effectors (such as STAT3) to suppress PD-L1 transcription or to induce its proteasomal degradation. Specifically, the repositioning of the approved drugs liothyronine, azelnidipine (and related dihydropyridine calcium channel blockers), niclosamide, albendazole/flubendazole, and a few other modulators of the PD-1/PD-L1 checkpoint (repaglinide, pimozide, fenofibrate, lonazolac, propranolol) is presented. Their capacity to bind to PD-L1 or to repress its expression and function offer novel perspectives for combination with PD-1 targeted biotherapeutics. These known and affordable drugs could be useful to improve the therapy of cancer.

9.
Int J Mol Sci ; 23(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628366

RESUMO

Acute myeloid leukemia (AML) is a hematological malignancy with a high risk of relapse. This issue is associated with the development of mechanisms leading to drug resistance that are not yet fully understood. In this context, we previously showed the clinical significance of the ATP binding cassette subfamily B-member 1 (ABCB1) in AML patients, namely its association with stemness markers and an overall worth prognosis. Calcium signaling dysregulations affect numerous cellular functions and are associated with the development of the hallmarks of cancer. However, in AML, calcium-dependent signaling pathways remain poorly investigated. With this study, we show the involvement of the ORAI1 calcium channel in store-operated calcium entry (SOCE), the main calcium entry pathway in non-excitable cells, in two representative human AML cell lines (KG1 and U937) and in primary cells isolated from patients. Moreover, our data suggest that in these models, SOCE varies according to the differentiation status, ABCB1 activity level and leukemic stem cell (LSC) proportion. Finally, we present evidence that ORAI1 expression and SOCE amplitude are modulated during the establishment of an apoptosis resistance phenotype elicited by the chemotherapeutic drug Ara-C. Our results therefore suggest ORAI1/SOCE as potential markers of AML progression and drug resistance apparition.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Citarabina/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
10.
Leuk Res ; 118: 106871, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35633618

RESUMO

Subsequent blast (BP) or accelerated phase (AP) is a severe complication of Philadelphia-negative myeloproliferative neoplasms (MPNs). The prognosis is generally dismal, but hypomethylating agents (HMAs) may induce a long-lasting response in a minority of patients. Here, we report a cohort of six patients with BP/AP-MPN who experienced MPN relapse after a leukemia response was obtained with azacytidine. Five of the patients achieved complete remission despite the presence of characteristics associated with poor prognosis, such as complex and monosomal karyotypes, TP53 mutations, and EVI1 overexpression. These remissions persisted for over five years in four of the 6 patients. All patients showed rapid reemergence of MPN within a median of two months with thrombocytosis requiring the addition of anagrelide, hydroxyurea, or ruxolitinib given continuously in parallel with the azacytidine cycle. Serial JAK2 V617F allelic burden measurements showed little variation. Thromboembolic events occurred in 3 patients, one leading to death. These findings confirm that HMA may reverse the disease course in AP/BP-MPN to a more chronic phase that may last for years but also lead to morbidity and mortality. Combining maintenance therapy with HMA and MPN-specific drugs appears to be a possible approach to avoiding leukemia relapse and controlling MPN disease.


Assuntos
Leucemia , Transtornos Mieloproliferativos , Neoplasias , Azacitidina/uso terapêutico , Humanos , Janus Quinase 2/genética , Leucemia/tratamento farmacológico , Ativação Linfocitária , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Neoplasias/tratamento farmacológico , Recidiva
11.
Eur J Med Chem ; 236: 114343, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429911

RESUMO

Immuno-therapy has become a leading strategy to fight cancer. Over the past few years, immuno-therapies using checkpoint inhibitor monoclonal antibodies (mAbs) against programmed death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1) have demonstrated improved survival compared with chemotherapy. We describe the microwave-assisted synthesis and the characterization of an innovative series of synthetic compounds endowed with nanomolar activity against PD-L1. The properties of the compounds were characterized using several biophysical techniques including microscale thermophoresis (MST) and fluorescence resonance energy transfer (FRET) measurements. A few small molecules demonstrated a high affinity for human PD-L1, potently disrupted the PD-L1:PD-1 interaction and inhibited Src homology region 2 domain-containing phosphatase (SHP2) recruitment to PD-1. More than 30 molecules from the pyrazolone family have been synthesized and 5 highly potent "PD-L1 silencing compounds" have been identified, based on in vitro measurements. Structure-activity relationships have been defined and ADME properties were evaluated. The phenyl-pyrazolone unit offers novel perspectives to design PD-L1-targeting agents, potentially useful to combat cancer and other pathologies implicating the PD-1/PD-L1 checkpoint.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Pirazolonas , Antígeno B7-H1 , Humanos , Ligantes , Receptor de Morte Celular Programada 1 , Pirazolonas/farmacologia
12.
Br J Haematol ; 198(3): 535-544, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35438802

RESUMO

In order to improve the outcome observed with azacitidine (AZA) in higher-risk Myelodysplastic syndrome (MDS), its combination with other drugs in MDS must be evaluated. So far, no combination has not been shown to be more effective than AZA alone. AZA-PLUS was a phase II trial that, in a "pick a winner" approach, randomly assigned patients with higher-risk MDS, CMML and low blast count AML to: AZA; AZA plus lenalidomide; AZA plus Valproic Acid or AZA plus Idarubicin. 322 patients were included. After six cycles, 69 (21.4%) CR + PR were observed with no benefit from any combination. Median EFS and OS were 17.2 and 19.7 months in the whole cohort, respectively, with no difference across randomised arms. Infection and rates of hospitalisation during the first six cycles were higher in the AZA-LEN And AZA-IDA arm, related to increased myelosuppression. Factors associated with better response were IPSS, favourable or intermediate karyotype, haemoglobin, lower circulating blast count, fibrinogen level and lower LDH, while poorer survival was seen in therapy-related MDS and, in the case of TP53, PTPN11 or CSF3R mutation. The combinations used did not improve the outcome obtained with AZA alone. However, our "pick a winner" randomised strategy may remain useful with potentially more active drugs to be tested in combination with AZA.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , Leucemia Mieloide Aguda , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/uso terapêutico , Humanos , Idarubicina/uso terapêutico , Lenalidomida/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Resultado do Tratamento , Ácido Valproico/uso terapêutico
13.
PLoS One ; 17(4): e0267508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486629

RESUMO

Acute myeloid leukemia (AML) is characterized by blocked differentiation and extensive proliferation of hematopoietic progenitors/precursors. Relapse is often observed after chemotherapy due to the presence of residual leukemic cells, which is also called minimal residual disease (MRD). Subclonal heterogeneity at diagnosis was found to be responsible for MRD after treatment. Patient xenograft mouse models are valuable tools for studying MRD after chemotherapy; however, the contribution of the immune system in these models is usually missing. To evaluate its role in leukemic persistence, we generated an immune-competent AML mouse model of persistence after chemotherapy treatment. We used well-characterized (phenotypically and genetically) subclones of the murine C1498 cell line stably expressing the ZsGreen reporter gene and the WT1 protein, a valuable antigen. Accordingly, these subclones were also selected due to their in vitro aracytidine (Ara-c) sensitivity. A combination of 3 subclones (expressing or not expressing WT1) was found to lead to prolonged mouse survival after Ara-c treatment (as long as 150 days). The presence of residual leukemic cells in the blood and BM of surviving mice indicated their persistence. Thus, a new mouse model that may offer insights into immune contributions to leukemic persistence was developed.


Assuntos
Leucemia Mieloide Aguda , Animais , Citarabina/farmacologia , Citarabina/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Neoplasia Residual/diagnóstico
14.
Ann Hematol ; 101(6): 1321-1331, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35352216

RESUMO

Relapse is a major cause of treatment failure after allogeneic hematopoietic cell transplantation (allo-HCT) in myeloid malignancies. Additional strategies have been devised to further maximize the immunologic effect of allo-HCT, notably through maintenance therapy with hypomethylating agents such as 5-azacytidine (AZA). We conducted a single-center retrospective study to investigate the efficacy of AZA after allo-HCT for high-risk myeloid malignancies. All patients transplanted between Jan 2014 and Sept 2019 for high-risk acute myeloid leukemia (n = 123), myelodysplastic syndrome (n = 51), or chronic myelomonocytic leukemia (n = 11) were included. Patients who died, relapsed, or developed grade ≥ 2 acute graft-versus-host disease before day + 60 were excluded, as well as those who were eligible for anti-FMS-like tyrosine kinase 3 maintenance. Of the 185 included patients, 65 received AZA while 120 did not. Median age at transplant was 59 years; 51.9% of patients were males. The median follow-up was 24 months for both groups. Regarding main patient characteristics and transplantation modalities, the two groups were comparable. In multivariate analyses, there were no significant differences between the two groups in terms of 2-year cumulative incidence of relapse (HR = 1.19; 95% confidence interval (CI) 0.67-2.12; p = 0.55), overall survival (HR = 0.62; 95%CI 0.35-1.12; p = 0.12) and event-free survival (HR = 0.97; 95%CI 0.60-1.58; p = 0.91) rates. In conclusion, single-agent AZA does not appear to be an optimal drug for preventing post-transplant relapse in patients with high-risk myeloid malignancies. This study highlights the need for prospective studies of alternative therapies or combination approaches in the post-transplant setting.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Neoplasias , Azacitidina/uso terapêutico , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Transtornos Mieloproliferativos/complicações , Neoplasias/complicações , Estudos Prospectivos , Recidiva , Estudos Retrospectivos , Condicionamento Pré-Transplante/efeitos adversos
15.
Cells ; 11(3)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35159351

RESUMO

Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.


Assuntos
Cálcio , Leucemia Mieloide Aguda , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Cálcio/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Microambiente Tumoral/genética
16.
Nat Commun ; 13(1): 956, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177596

RESUMO

Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts. We demonstrate that TRPC3 protein, acting as a controller of mitochondrial Ca2+ load via negative regulation of IP3 receptor-mediated Ca2+ release, is down regulated in senescence regardless of the type of senescence inducer. This remodelling promotes cytosolic/mitochondrial Ca2+ oscillations and elevates mitochondrial Ca2+ load, mitochondrial oxygen consumption rate and oxidative phosphorylation. Re-expression of TRPC3 in senescent cells diminishes mitochondrial Ca2+ load and promotes escape from OIS-induced senescence. Cellular senescence evoked by TRPC3 downregulation in stromal cells displays a proinflammatory and tumour-promoting secretome that encourages cancer epithelial cell proliferation and tumour growth in vivo. Altogether, our results unravel the mechanism contributing to pro-tumour behaviour of senescent cells.


Assuntos
Carcinogênese/patologia , Neoplasias/patologia , Canais de Cátion TRPC/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Cultura Primária de Células
17.
Lab Chip ; 22(5): 908-920, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098952

RESUMO

Analyzing cell-cell interaction is essential to investigate how immune cells function. Elegant designs have been demonstrated to study lymphocytes and their interaction partners. However, these devices have been targeting cells of similar dimensions. T lymphocytes are smaller, more deformable, and more sensitive to pressure than many cells. This work aims to fill the gap of a method for pairing cells with different dimensions. The developed method uses hydrodynamic flow focusing in the z-direction for on-site modulation of effective channel height to capture smaller cells as single cells. Due to immune cells' sensitivity to pressure, the proposed method provides a stable system without any change in flow conditions at the analysis area throughout experiments. Paired live cells have their activities analyzed with calcium imaging at the immunological synapse formed under a controlled environment. The method is demonstrated with primary human T lymphocytes, acute myeloid leukemia (AML) cell lines, and primary AML blasts.


Assuntos
Sinapses Imunológicas , Leucemia Mieloide Aguda , Comunicação Celular , Humanos , Dispositivos Lab-On-A-Chip , Linfócitos T
18.
Leukemia ; 36(3): 656-663, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34615986

RESUMO

The independent prognostic impact of specific dysplastic features in acute myeloid leukemia (AML) remains controversial and may vary between genomic subtypes. We apply a machine learning framework to dissect the relative contribution of centrally reviewed dysplastic features and oncogenetics in 190 patients with de novo AML treated in ALFA clinical trials. One hundred and thirty-five (71%) patients achieved complete response after the first induction course (CR). Dysgranulopoiesis, dyserythropoiesis and dysmegakaryopoiesis were assessable in 84%, 83% and 63% patients, respectively. Multi-lineage dysplasia was present in 27% of assessable patients. Micromegakaryocytes (q = 0.01), hypolobulated megakaryocytes (q = 0.08) and hyposegmented granulocytes (q = 0.08) were associated with higher ELN-2017 risk. Using a supervised learning algorithm, the relative importance of morphological variables (34%) for the prediction of CR was higher than demographic (5%), clinical (2%), cytogenetic (25%), molecular (29%), and treatment (5%) variables. Though dysplasias had limited predictive impact on survival, a multivariate logistic regression identified the presence of hypolobulated megakaryocytes (p = 0.014) and micromegakaryocytes (p = 0.035) as predicting lower CR rates, independently of monosomy 7 (p = 0.013), TP53 (p = 0.004), and NPM1 mutations (p = 0.025). Assessment of these specific dysmegakarypoiesis traits, for which we identify a transcriptomic signature, may thus guide treatment allocation in AML.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Adulto , Idoso , Análise Citogenética , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Aprendizado de Máquina , Masculino , Megacariócitos/patologia , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento
19.
J Cell Biochem ; 123(3): 543-556, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927768

RESUMO

Receptor-interacting protein kinase 3 (RIPK3) can induce necroptosis, apoptosis, or cell proliferation and is silenced in several hematological malignancies. We previously reported that RIPK3 activity independent of its kinase domain induces caspase-mediated p65/RelA cleavage, resulting in N-terminal 1-361 and C-terminal 362-549 fragments. We show here that a noncleavable p65/RelA D361E mutant expressed in DA1-3b leukemia cells decreases mouse survival times and that coexpression of p65/RelA fragments increases the tumorigenicity of B16F1 melanoma cells. This aggressiveness in vivo did not correlate with NF-κB activity measured in vitro. The fragments and p65/RelA D361E mutant induced different expression profiles in DA1-3b and B16F1 cells. Stemness markers were affected: p65/RelA D361E increased ALDH activity in DA1-3b cells, and fragment expression increased melanoma sphere formation in B16/F1 cells. p65/RelA fragments and the D361E noncleavable mutant decreased oxidative or glycolytic cell metabolism, with differences observed between models. Thus, p65/RelA cleavage initiated by kinase-independent RIPK3 activity in cancer cells is not neutral and induces pleiotropic effects in vitro and in vivo that may vary across tumor types.


Assuntos
Melanoma , NF-kappa B , Animais , Apoptose , Caspases/metabolismo , Camundongos , NF-kappa B/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
20.
Blood Adv ; 6(3): 998-1003, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34714914

RESUMO

The recently described vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is caused by somatic mutations in UBA1. Patients with VEXAS syndrome display late-onset autoinflammatory symptoms, usually refractory to treatment, and hematologic abnormalities. The identification of an easily-accessible specific marker (UBA1 mutations) is of particular interest as it allows the convergence of various inflammatory and hematological symptoms in a unique clinico-biological entity and gives the opportunity to design specific treatment strategies. Here we retrospectively identified 6 patients with VEXAS syndrome who underwent allogeneic hematopoietic stem cell transplantation (ASCT). To date, no treatment guidelines have been validated. In 4 patients, ASCT was guided by life-threatening autoinflammatory symptoms that were refractory to multiple therapies. Three patients are in durable complete remission 32, 38, and 37 months after ASCT. Two others are in complete remission response after 3 and 5 months. One unfortunately died post-ASCT. This report suggests that ASCT could be a curative option in patients with VEXAS syndrome and severe manifestations. Considering the complications and side effects of the procedure as well as the existence of other potential treatment, clinical trials are needed to define the subgroup of patients who will benefit from this strategy and its place in the therapeutic arsenal against VEXAS syndrome.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Enzimas Ativadoras de Ubiquitina , Humanos , Mutação , Estudos Retrospectivos , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA