Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Immunol Res ; 2022: 1737419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35097132

RESUMO

Complement factor H (FH) is a key regulator of the alternative pathway of complement, in man and mouse. Earlier, our studies revealed that the absence of FH causes the C57BL6 mouse to become susceptible to chronic serum sickness (CSS) along with an increase in the renal infiltration of macrophages compared to controls. To understand if the increased recruitment of macrophages (Mϕs) to the kidney was driving inflammation and propagating injury, we examined the effect of Mϕ depletion with clodronate in FH knockout mice with CSS. Eight-week-old FHKO mice were treated with apoferritin (4 mg/mouse) for 5 wks and with either vehicle (PBS) or clodronate (50 mg/kg ip, 3 times/wk for the last 3 weeks). The administration of clodronate decreased monocytes and Mϕs in the kidneys by >80%. Kidney function assessed by BUN and albumin remained closer to normal on depletion of Mϕs. Clodronate treatment prevented the alteration in cytokines, TNFα and IL-6, and increase in gene expression of connective tissue growth factor (CTGF), TGFß-1, matrix metalloproteinase-9 (MMP9), fibronectin, laminin, and collagen in FHKO mice with CSS (P < 0.05). Clodronate treatment led to relative protection from immune complex- (IC-) mediated disease pathology during CSS as assessed by the significantly reduced glomerular pathology (GN) and extracellular matrix. Our results suggest that complement activation is one of the mechanism that regulates the macrophage landscape and thereby fibrosis. The exact mechanism remains to be deciphered. In brief, our data shows that Mϕs play a critical role in FH-dependent ICGN and Mϕ depletion reduces disease progression.


Assuntos
Glomerulonefrite/imunologia , Doenças do Complexo Imune/imunologia , Rim/metabolismo , Macrófagos/imunologia , Animais , Apoferritinas/administração & dosagem , Movimento Celular , Ácido Clodrônico/administração & dosagem , Fator H do Complemento/metabolismo , Progressão da Doença , Fibrose , Rim/imunologia , Rim/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914709

RESUMO

Patients with chronic kidney disease (CKD) and end-stage renal disease suffer from increased cardiovascular events and cardiac mortality. Prior studies have demonstrated that a portion of this enhanced risk can be attributed to the accumulation of microbiota-derived toxic metabolites, with most studies focusing on the sulfonated form of p-cresol (PCS). However, unconjugated p-cresol (uPC) itself was never assessed due to rapid and extensive first-pass metabolism that results in negligible serum concentrations of uPC. These reports thus failed to consider the host exposure to uPC prior to hepatic metabolism. In the current study, not only did we measure the effect of altering the intestinal microbiota on lipid accumulation in coronary arteries, but we also examined macrophage lipid uptake and handling pathways in response to uPC. We found that atherosclerosis-prone mice fed a high-fat diet exhibited significantly higher coronary artery lipid deposits upon receiving fecal material from CKD mice. Furthermore, treatment with uPC increased total cholesterol, triglycerides, and hepatic and aortic fatty deposits in non-CKD mice. Studies employing an in vitro macrophage model demonstrated that uPC exposure increased apoptosis whereas PCS did not. Additionally, uPC exhibited higher potency than PCS to stimulate LDL uptake and only uPC induced endocytosis- and pinocytosis-related genes. Pharmacological inhibition of varying cholesterol influx and efflux systems indicated that uPC increased macrophage LDL uptake by activating macropinocytosis. Overall, these findings indicate that uPC itself had a distinct effect on macrophage biology that might have contributed to increased cardiovascular risk in patients with CKD.


Assuntos
Aorta/metabolismo , LDL-Colesterol/metabolismo , Doença da Artéria Coronariana/metabolismo , Cresóis/metabolismo , Microbioma Gastrointestinal , Fígado/metabolismo , Macrófagos/metabolismo , Pinocitose/fisiologia , Insuficiência Renal Crônica/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Colesterol/metabolismo , LDL-Colesterol/efeitos dos fármacos , Doença da Artéria Coronariana/patologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Cresóis/farmacologia , Dieta Hiperlipídica , Transplante de Microbiota Fecal , Falência Renal Crônica/metabolismo , Falência Renal Crônica/microbiologia , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Camundongos , Pinocitose/efeitos dos fármacos , Insuficiência Renal Crônica/microbiologia , Triglicerídeos/metabolismo
3.
Immunol Invest ; 46(8): 816-832, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29058550

RESUMO

The complement system which is a critical mediator of innate immunity plays diverse roles in the neuropathogenesis of HIV-1 infection such as clearing HIV-1 and promoting productive HIV-1 replication. In the development of HIV-1 associated neurological disorders (HAND), there may be an imbalance between complement activation and regulation, which may contribute to the neuronal damage as a consequence of HIV-1 infection. It is well recognized that opiate abuse exacerbates HIV-1 neuropathology, however, little is known about the role of complement proteins in opiate induced neuromodulation, specifically in the presence of co-morbidity such as HIV-1 infection. Complement levels are significantly increased in the HIV-1-infected brain, thus HIV-induced complement synthesis may represent an important mechanism for the pathogenesis of AIDS in the brain, but remains underexplored. Anti-HIV-1 antibodies are able to initiate complement activation in HIV-1 infected CNS cells such as microglia and astrocytes during the course of disease progression; however, this complement activation fails to clear and eradicate HIV-1 from infected cells. In addition, the antiretroviral agents used for HIV therapy cause dysregulation of lipid metabolism, endothelial, and adipocyte cell function, and activation of pro-inflammatory cytokines. We speculate that both HIV-1 and opiates trigger a cytokine-mediated pro-inflammatory stimulus that modulates the complement cascade to exacerbate the virus-induced neurological damage. We examined the expression levels of C1q, SC5b-9, C5L2, C5aR, C3aR, and C9 key members of the complement cascade both in vivo in post mortem brain frontal cortex tissue from patients with HAND who used/did not use heroin, and in vitro using human microglial cultures treated with HIV tat and/or heroin. We observed significant expression of C1q and SC5b-9 by immunofluorescence staining in both the brain cortical and hippocampal region in HAND patients who abused heroin. Additionally, we observed increased gene expression of C5aR, C3aR, and C9 in the brain tissue of both HIV-1 infected patients with HAND who abused and did not abuse heroin, as compared to HIV negative controls. Our results show a significant increase in the expression of complement proteins C9, C5L2, C5aR, and C3aR in HIV transfected microglia and an additional increase in the levels of these complement proteins in heroin-treated HIV transfected microglia. This study highlights the a) potential roles of complement proteins in the pathogenesis of HIV-1-related neurodegenerative disorders; b) the combined effect of an opiate, like heroin, and HIV viral protein like HIV tat on complement proteins in normal human microglial cells and HIV transfected microglial cells. In the context of HAND, targeting selective steps in the complement cascade could help ameliorating the HIV burden in the CNS, thus investigations of complement-related therapeutic approaches for the treatment of HAND are warranted.


Assuntos
Nefropatia Associada a AIDS/imunologia , Proteínas do Sistema Complemento/metabolismo , Lobo Frontal/metabolismo , Infecções por HIV/imunologia , HIV-1/fisiologia , Dependência de Heroína/imunologia , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Nefropatia Associada a AIDS/epidemiologia , Cadáver , Células Cultivadas , Comorbidade , Ativação do Complemento , Citocinas/metabolismo , Infecções por HIV/epidemiologia , Dependência de Heroína/epidemiologia , Humanos , Imunomodulação , Microglia/patologia , Microglia/virologia , Regulação para Cima , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
4.
Am J Physiol Renal Physiol ; 310(9): F895-908, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26887830

RESUMO

Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade. Recently, we and others have described a genetic form of TMA caused by mutations in the gene diacylglycerol kinase-ε (DGKE) that encodes the lipid kinase DGKε (Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi MR, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F, Ji WZ, Overton JD, Mane SM, Nurnberg G, Altmuller J, Thiele H, Morin D, Deschenes G, Baudouin V, Llanas B, Collard L, Majid MA, Simkova E, Nurnberg P, Rioux-Leclerc N, Moeckel GW, Gubler MC, Hwa J, Loirat C, Lifton RP. Nat Genet 45: 531-536, 2013; Ozaltin F, Li BH, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang CY, Chen P, Lu DM, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M. J Am Soc Nephrol 24: 377-384, 2013). DGKε is unrelated to the complement pathway, which suggests that unidentified pathogenic mechanisms independent of complement dysregulation may result in TMA. Studying Dgke knockout mice may help to understand the pathogenesis of this disease, but no glomerular phenotype has been described in these animals so far. Here we report that Dgke null mice present subclinical microscopic anomalies of the glomerular endothelium and basal membrane that worsen with age and develop glomerular capillary occlusion when exposed to nephrotoxic serum. We found that induction of cyclooxygenase-2 and of the proangiogenic prostaglandin E2 are impaired in Dgke null kidneys and are associated with reduced expression of the antithrombotic cell adhesion molecule platelet endothelial cell adhesion molecule-1/CD31 in the glomerular endothelium. Notably, prostaglandin E2 supplementation was able to rescue motility defects of Dgke knockdown cells in vitro and to restore angiogenesis in a test in vivo. Our results unveil an unexpected role of Dgke in the induction of cyclooxygenase-2 and in the regulation of glomerular prostanoids synthesis under stress.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Diacilglicerol Quinase/genética , Dinoprostona/biossíntese , Endotélio/patologia , Glomerulonefrite/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Envelhecimento/patologia , Animais , Movimento Celular , Glomerulonefrite/enzimologia , Glomerulonefrite/metabolismo , Testes de Função Renal , Glomérulos Renais/enzimologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Cicatrização
5.
Kidney Int ; 87(5): 930-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25565310

RESUMO

In chronic serum sickness, glomerular immune complexes form, yet C57BL/6 mice do not develop glomerulonephritis unless complement factor H (CfH) is absent, indicating the relevance of complement regulation. Complement receptor 3 (CD11b) and Fcγ receptors on leukocytes, and CfH on platelets, can bind immune complexes. Here we induced immune complex-mediated glomerulonephritis in CfH(-/-) mice chimeric for wild-type, CfH(-/-), CD11b(-/-), or FcRγ(-/-) bone marrow stem cells. Glomerulonephritis was worse in CD11b(-/-) chimeras compared with all others, whereas disease in FcRγ(-/-) and wild-type chimeras was comparable. Disease tracked strongly with humoral immune responses, but not glomerular immune complex deposits. Interstitial inflammation with M1 macrophages strongly correlated with glomerulonephritis scores. CD11b(-/-) chimeras had significantly more M1 macrophages and CD4(+) T cells. The renal dendritic cell populations originating from bone marrow-derived CD11c(+) cells were similar in all experimental groups. CD11b(+) cells bearing colony-stimulating factor 1 receptor were present in kidneys, including CD11b(-/-) chimeras; these cells correlated negatively with glomerulonephritis scores. Thus, experimental immune complex-mediated glomerulonephritis is associated with accumulation of M1 macrophages and CD4(+) T cells in kidneys and functional renal insufficiency. Hence, CD11b on mononuclear cells is instrumental in generating an anti-inflammatory response in the inflamed kidney.


Assuntos
Antígeno CD11b/metabolismo , Fator H do Complemento/metabolismo , Glomerulonefrite/imunologia , Leucócitos/metabolismo , Receptores de IgG/metabolismo , Animais , Complexo Antígeno-Anticorpo/metabolismo , Apoferritinas/imunologia , Medula Óssea/metabolismo , Antígeno CD11b/genética , Antígenos CD18/metabolismo , Fator H do Complemento/genética , Glomerulonefrite/metabolismo , Imunoglobulina G/metabolismo , Camundongos Endogâmicos C57BL , Receptor da Anafilatoxina C5a/metabolismo , Receptores de IgG/genética , Doença do Soro/complicações
6.
Clin Dev Immunol ; 2013: 836989, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24489579

RESUMO

Using a reversible UUO model (rUUO), we have demonstrated that C57BL/6 mice are susceptible to development of CKD after obstruction-mediated kidney injury while BALB/c mice are resistant. We hypothesized that selective systemic depletion of subpopulations of inflammatory cells during injury or repair might alter the development of CKD. To investigate the impact of modification of Th-lymphocytes or macrophage responses on development of CKD after rUUO, we used an anti-CD4 antibody (GK1.5) or liposomal clodronate to systemically deplete CD4(+) T cells or monocyte/macrophages, respectively, prior to and throughout the rUUO protocol. Flow cytometry and immunohistochemistry confirmed depletion of target cell populations. C57BL/6 mice treated with the GK1.5 antibody to deplete CD4(+) T cells had higher BUN levels and delayed recovery from rUUO. Treatment of C57BL/6 mice with liposomal clodronate to deplete monocyte/macrophages led to a relative protection from CKD as assessed by BUN values. Our results demonstrate that modulation of the inflammatory response during injury and repair altered the susceptibility of C57BL/6 mice to development of CKD in our rUUO model.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Depleção Linfocítica , Macrófagos/imunologia , Monócitos/imunologia , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/patologia , Animais , Atrofia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Fibrose , Imunofenotipagem , Terapia de Imunossupressão/métodos , Macrófagos/metabolismo , Masculino , Camundongos , Monócitos/metabolismo , Fenótipo , Obstrução Ureteral
7.
Kidney Int ; 82(9): 961-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22832515

RESUMO

Chronic serum sickness leads to the formation of glomerular immune complexes; however, C57BL/6 mice do not develop glomerulonephritis unless complement factor H (CFH) is absent from the plasma. Here we studied the role for C5a receptor (R) in this setting. The exaggerated humoral immune response in CFH(-/-) mice was normalized in CFH(-/-)C5aR(-/-) double knockout mice, highlighting the C5aR dependence. The CFH knockout mice developed proliferative glomerulonephritis with endocapillary F4/80+ macrophage infiltration, a process reduced in the double knockout mice. There was no interstitial inflammation by histologic criteria or flow cytometry for F4/80+ Ly6C(hi)CCR2(hi) inflammatory macrophages. There were, however, more interstitial CD3+ CD4+ T lymphocytes in CFH knockout mice with chronic serum sickness, while double knockout mice had greater than 5-fold more Ly6C(lo)CCR2(lo) anti-inflammatory macrophages compared to the CFH knockout mice. Mice lacking C5aR were significantly protected from functional renal disease as assessed by blood urea nitrogen levels. Thus, IgG- and iC3b-containing immune complexes are not inflammatory in C57BL/6 mice. Yet when these mice lack CFH, sufficient C3b persists in glomeruli to generate C5a and activate C5aR.


Assuntos
Glomerulonefrite/imunologia , Doenças do Complexo Imune/imunologia , Nefropatias/imunologia , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/imunologia , Animais , Fator H do Complemento/deficiência , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Modelos Animais de Doenças , Glomerulonefrite/genética , Glomerulonefrite/patologia , Doenças da Deficiência Hereditária de Complemento , Doenças do Complexo Imune/genética , Doenças do Complexo Imune/patologia , Rim/imunologia , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença do Soro/genética , Doença do Soro/imunologia , Doença do Soro/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
8.
J Immunol ; 186(3): 1849-60, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21187439

RESUMO

The most prevalent severe manifestation of systemic lupus erythematosus is nephritis, which is characterized by immune complex deposition, inflammation, and scarring in glomeruli and the tubulointerstitium. Numerous studies indicated that glomerulonephritis results from a systemic break in B cell tolerance, resulting in the local deposition of immune complexes containing Abs reactive with ubiquitous self-Ags. However, the pathogenesis of systemic lupus erythematosus tubulointerstitial disease is not known. In this article, we demonstrate that in more than half of a cohort of 68 lupus nephritis biopsies, the tubulointerstitial infiltrate was organized into well-circumscribed T:B cell aggregates or germinal centers (GCs) containing follicular dendritic cells. Sampling of the in situ-expressed Ig repertoire revealed that both histological patterns were associated with intrarenal B cell clonal expansion and ongoing somatic hypermutation. However, in the GC histology, the proliferating cells were CD138(-)CD20(+) centroblasts, whereas they were CD138(+)CD20(low/-) plasmablasts in T:B aggregates. The presence of GCs or T:B aggregates was strongly associated with tubular basement membrane immune complexes. These data implicate tertiary lymphoid neogenesis in the pathogenesis of lupus tubulointerstitial inflammation.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Túbulos Renais/imunologia , Túbulos Renais/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Imunidade Adaptativa , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Movimento Celular/genética , Movimento Celular/imunologia , Criança , Pré-Escolar , Células Clonais , Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/patologia , Feminino , Centro Germinativo/imunologia , Centro Germinativo/patologia , Humanos , Lactente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Nefrite Lúpica/genética , Masculino , Dados de Sequência Molecular , Plasmócitos/imunologia , Plasmócitos/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Adulto Jovem
9.
Biochem J ; 428(3): 347-54, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20415667

RESUMO

VEGF (vascular endothelial growth factor)-C is a major growth factor implicated in various physiological processes, such as angiogenesis and lymphangiogenesis. In the present paper, we report the identification of three short VEGF-C splicing isoforms (VEGF-C62, VEGF-C129 and VEGF-C184) from immortalized mouse kidney PTECs (proximal tubular epithelial cells). Semi-quantitative RT (reverse transcription)-PCR analysis showed these isoforms were universally expressed to varying degrees in different tissues with high expression levels in the kidney. In immortalized PTECs and podocytes, VEGF-C62 can activate phosphorylation of FAK (focal adhesion kinase) and promote cell adhesion to substratum. Cell survival was also increased by VEGF-C62 treatment in the absence of serum. VEGF-C62 can also reduce cell proliferation in PTECs and podocytes. Nucleolin was one of the proteins that associated with VEGF-C62 in pull-down assays using GST (glutathione transferase) fusion proteins as bait, indicating different protein binding requirements for VEGF-C62 compared with VEGF-C. In conclusion, these newly identified VEGF-C isoforms represent a new class of proteins, which are potentially involved in epithelial cell adhesion and proliferation through novel receptor pathways.


Assuntos
Splicing de RNA , Fator C de Crescimento do Endotélio Vascular/genética , Animais , Adesão Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/metabolismo
10.
J Neuroimmunol ; 221(1-2): 46-52, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20207017

RESUMO

To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-alpha and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus.


Assuntos
Encéfalo/metabolismo , Complemento C5a/uso terapêutico , Vasculite Associada ao Lúpus do Sistema Nervoso Central/tratamento farmacológico , Vasculite Associada ao Lúpus do Sistema Nervoso Central/patologia , Receptor da Anafilatoxina C5a/metabolismo , Animais , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Encéfalo/citologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Marcação In Situ das Extremidades Cortadas/métodos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
J Immunol ; 182(9): 5363-73, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19380783

RESUMO

Intestinal ischemia-reperfusion (IR) injury is initiated when natural IgM Abs recognize neo-epitopes that are revealed on ischemic cells. The target molecules and mechanisms whereby these neo-epitopes become accessible to recognition are not well understood. Proposing that isolated intestinal epithelial cells (IEC) may carry IR-related neo-epitopes, we used in vitro IEC binding assays to screen hybridomas created from B cells of unmanipulated wild-type C57BL/6 mice. We identified a novel IgM mAb (mAb B4) that reacted with the surface of IEC by flow cytometric analysis and was alone capable of causing complement activation, neutrophil recruitment and intestinal injury in otherwise IR-resistant Rag1(-/-) mice. mAb B4 was found to specifically recognize mouse annexin IV. Preinjection of recombinant annexin IV blocked IR injury in wild-type C57BL/6 mice, demonstrating the requirement for recognition of this protein to develop IR injury in the context of a complex natural Ab repertoire. Humans were also found to exhibit IgM natural Abs that recognize annexin IV. These data in toto identify annexin IV as a key ischemia-related target Ag that is recognized by natural Abs in a pathologic process required in vivo to develop intestinal IR injury.


Assuntos
Anexina A4/imunologia , Anexina A4/metabolismo , Imunoglobulina M/metabolismo , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/imunologia , Traumatismo por Reperfusão/imunologia , Sequência de Aminoácidos , Animais , Anexina A4/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoglobulina M/efeitos adversos , Imunoglobulina M/biossíntese , Imunoglobulina M/fisiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Receptores de Complemento 3d/deficiência , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
12.
Clin Exp Nephrol ; 12(3): 181-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18274700

RESUMO

BACKGROUND: A close correlation has been shown between tubulointerstitial (TI) injury and the outcome of renal dysfunction, and nuclear factor-kappaB (NFkappaB) has been shown to play a key role in proteinuria-induced TI injury. To explore the molecular mechanisms of the proteinuria-induced TI injury further, we have analyzed renal gene expression with DNA microarrays, with and without specific inhibition of NF-kappaB in the proximal tubules. METHODS: Unilaterally nephrectomized rats loaded with bovine serum albumin (BSA) were used as a model of proteinuric renal injury. Renal NF-kappaB activation was inhibited by gene transfer of the truncated form of IkappaBalpha (inhibitor of NF-kappaB) via the injection of a recombinant adenovirus vector into the renal artery, an method established in a previous study. Total RNA was extracted from the kidney and analyzed with a DNA microarrays containing 1081 genes. RESULTS: Renal NF-kappaB activation and TI injury in BSA-loaded proteinuric rats were inhibited by the gene transfer of the truncated form of IkappaBalpha. DNA microarray analysis revealed 45 up-regulated genes and six down-regulated genes in the proteinuric rats, and expression of 23 of these 51 genes was significantly altered by NF-kappaB inhibition. Among these 23 genes, we focused on clusterin and confirmed the results of microarray analysis by Western blotting and PCR. CONCLUSION: In this study, 23 genes of 51 proteinuria-related genes were regulated by NF-kappaB activation, suggesting that some of these genes may serve as target molecules for the treatment of progressive TI injury.


Assuntos
NF-kappa B/genética , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteinúria/metabolismo , Animais , Apoptose , Clusterina/genética , Clusterina/metabolismo , DNA/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Proteínas I-kappa B/genética , Marcação In Situ das Extremidades Cortadas , Nefrectomia , Nefrite Intersticial/etiologia , Nefrite Intersticial/metabolismo , Proteinúria/complicações , Ratos , Ratos Wistar
13.
Proc Natl Acad Sci U S A ; 105(8): 2889-94, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287052

RESUMO

Adipogenesis involves cell proliferation and differentiation, both of which have been shown to be regulated by micro (mi)RNA. During mouse preadipocyte 3T3L1 cell differentiation, we found that miR-17-92, a miRNA cluster that promotes cell proliferation in various cancers, was significantly up-regulated at the clonal expansion stage of adipocyte differentiation. Stable transfection of 3T3L1 cells with miR-17-92 resulted in accelerated differentiation and increased triglyceride accumulation after hormonal stimulation. By using a luciferase reporter assay, we demonstrated that miR-17-92 directly targeted the 3' UTR region of Rb2/p130, accounting for subsequently reduced Rb2/p130 mRNA and protein quantities at the stage of clonal expansion. siRNA-mediated knock-down of Rb2/p130 at the same stage of clonal expansion recapitulated the phenotype of overexpression of miR-17-92 in the stably transfected 3T3L1 cells. These data indicate that miR-17-92 promotes adipocyte differentiation by targeting and negatively regulating Rb2/p130.


Assuntos
Adipócitos/fisiologia , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica , MicroRNAs/genética , Proteína p130 Retinoblastoma-Like/metabolismo , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/metabolismo , Células 3T3-L1 , Animais , Compostos Azo , Western Blotting , Primers do DNA , Luciferases , Camundongos , MicroRNAs/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína p130 Retinoblastoma-Like/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Curr Genomics ; 9(7): 466-74, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19506735

RESUMO

Microarray-based clinical tests have become powerful tools in the diagnosis and treatment of diseases. In contrast to traditional DNA-based tests that largely focus on single genes associated with rare conditions, microarray-based tests are ideal for the study of diseases with underlying complex genetic causes. Several microarray based tests have been translated into clinical practice such as MammaPrint and AmpliChip CYP450. Additional cancer-related microarray-based tests are either in the process of FDA review or under active development, including Tissue of Tumor Origin and AmpliChip p53. All diagnostic microarray testing is ordered by physicians and tested by a Clinical Laboratories Improvement Amendment-certified (CLIA) reference laboratory. Recently, companies offering consumer based microarray testing have emerged. Individuals can order tests online and service providers deliver the results directly to the clients via a password-protected secure website. Navigenics, 23andMe and deCODE Genetics represent pioneering companies in this field. Although the progress of these microarray-based tests is extremely encouraging with the potential to revolutionize the recognition and treatment of common diseases, these tests are still in their infancy and face technical, clinical and marketing challenges. In this article, we review microarray-based tests which are currently approved or under review by the FDA, as well as the consumer-based testing. We also provide a summary of the challenges and strategic solutions in the development and clinical use of the microarray-based tests. Finally, we present a brief outlook for the future of microarray-based clinical applications.

15.
Neurochem Int ; 52(3): 447-56, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17884256

RESUMO

In this study, we demonstrate that mice deficient in TNFR1 (TNFR1(-/-)) were resistant to LPS-induced encephalopathy. Systemic administration of lipopolysaccharide (LPS) induces a widespread inflammatory response similar to that observed in sepsis. Following LPS administration TNFR1(-/-) mice had less caspase-dependent apoptosis in brain cells and fewer neutrophils infiltrating the brain (p<0.039), compared to control C57Bl6 (TNFR1(+/+)) mice. TNFR1-dependent increase in aquaporin (AQP)-4 mRNA and protein expression was observed with a concomitant increase in water content, in brain (18% increase in C57Bl6 mice treated with LPS versus those treated with saline), similar to cerebral edema observed in sepsis. Furthermore, absence of TNFR1 partially but significantly reduced the activation of astrocytes, as shown by immunofluorescence and markedly inhibited iNOS mRNA expression (p<0.01). Septic encephalopathy is a devastating complication of sepsis. Although, considerable work has been done to identify the mechanism causing the pathological alterations in this setting, the culprit still remains an enigma. Our results demonstrate for the first time that endotoxemia leads to inflammation in brain, with alteration in blood-brain barrier, up-regulation of AQP4 and associated edema, neutrophil infiltration, astrocytosis, as well as apoptotic cellular death, all of which appear to be mediated by TNF-alpha signaling through TNFR1.


Assuntos
Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Encefalite/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Sepse/complicações , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/genética , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Encéfalo/fisiopatologia , Encefalopatias Metabólicas/patologia , Encefalopatias Metabólicas/fisiopatologia , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/fisiopatologia , Quimiotaxia de Leucócito/genética , Encefalite/microbiologia , Encefalite/fisiopatologia , Gliose/genética , Gliose/metabolismo , Gliose/fisiopatologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética
16.
Lab Invest ; 87(12): 1186-94, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17922019

RESUMO

The complement system normally eliminates bacteria and has a protective effect. However, in an inflammatory setting such as sepsis, an exaggerated or insufficient activation of this cascade can have deleterious effect through the activation of glial cells, secretion of proinflammatory cytokines and generation of other toxic products. The aim of the present study was to investigate the role of the complement cascade in septic encephalopathy, through the passive injection of endotoxin/lipopolysaccharide (LPS) into mice overexpressing the potent complement inhibitor, CR1-related y (Crry-tg). Increased gliosis occurred in brains of endotoxemic mice. Concomitant with this, there was a significant rise in mRNA expression of GFAP, CD45 and proinflammatory molecules, TLR4, TNF-alpha and NO, in these brains. Consistent with the capacity of these inflammatory mediators, there was increased apoptosis as determined by DNA fragmentation and TUNEL staining on LPS treatment, which occurred through the Akt pathway. In addition, there was increased water content in brain, similar to cerebral edema observed in sepsis. Relative to wild-type mice, complement-inhibited mice had an attenuated inflammatory response, decreased edema and reduced apoptosis. Therefore, we demonstrate for the first time that the complement cascade appears to be one of the key players that cause brain pathology in an endotoxemic setting and therefore is a viable therapeutic target.


Assuntos
Encefalopatias/imunologia , Ativação do Complemento , Sepse/imunologia , Animais , Apoptose , Encefalopatias/etiologia , Encefalopatias/patologia , Edema Encefálico/etiologia , Edema Encefálico/imunologia , Marcação In Situ das Extremidades Cortadas , Antígenos Comuns de Leucócito/biossíntese , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Receptores de Complemento 3b , Sepse/etiologia , Sepse/patologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
17.
J Immunol ; 179(7): 4473-9, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17878343

RESUMO

It has been documented that CD40 is essential for B cell function. Casitas-B-lineage lymphoma protein-b (Cbl-b), an adapter protein and ubiquitin ligase, has been shown to regulate the activation of T and B cells through their Ag receptors. In this study, we report that CD40-induced B cell proliferation is significantly augmented in mice lacking Cbl-b. Furthermore, Cbl-b(-/-) mice display enhanced thymus-dependent Ab responses and germinal center formation, whereas introduction of CD40 deficiency abolishes these effects. Hyper thymus-dependent humoral response in Cbl-b(-/-) mice is in part due to an intrinsic defect in B cells. Mechanistically, Cbl-b selectively down-modulates CD40-induced activation of NF-kappaB and JNK. Cbl-b associates with TNF receptor-associated factor 2 upon CD40 ligation, and inhibits the recruitment of TNF receptor-associated factor 2 to the CD40. Together, our data suggest that Cbl-b attenuates CD40-mediated NF-kappaB and JNK activation, thereby suppressing B cell responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos B/metabolismo , Antígenos CD40/metabolismo , Regulação para Baixo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Proliferação de Células , Células Cultivadas , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina/metabolismo
18.
Semin Nephrol ; 27(3): 321-37, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17533009

RESUMO

The complement system is an important component of the innate immune system and a modulator of adaptive immunity. The entire complement system is focused on C3 and C5. Thus, there are proteins that activate C3 and C5, those that regulate this activation, and those that transduce the effects of C3 and C5 activation products; each can affect the kidney in renal injury. The normal kidney has the inherent capacity to protect itself from complement activation through cellular expression of decay-accelerating factor, membrane cofactor protein (in human beings), and Crry (in rodents). In addition, plasma factor H protects vascular spaces in the kidney. Although the main function of these proteins is to limit complement activation, there is now considerable evidence that they can transduce signals on engagement in immune cells. The G-protein-coupled 7-span transmembrane receptors for C3a and C5a, and the integral membrane complement receptors (CR) for C3b, iC3b, and C3dg, are expressed outside the kidney, particularly in cells of hematopoietic and immune lineage. These are important in renal injury through their infiltration of the kidney and/or by affecting kidney-directed immune responses. There is mounting evidence that intrinsic glomerular and tubular cell C3aR and C5aR expression and activation also can affect renal injury. CR1 on podocytes and the beta2 integrins CR3 and CR4 in kidney dendritic cells have functions that remain poorly defined. Cells of the kidney also have the capacity to produce and activate their own complement proteins. Thus, intrinsic renal cells express decay-accelerating factor, membrane cofactor protein, Crry, C3aR, C5aR, CR1, CR3, and CR4. These can be engaged by C3 and C5 activation products derived from systemic and local pools in renal injury. Given their capacity to provide signals that influence kidney cellular behavior, their activation can have substantial effects in renal injury. Defining these in a cell- and disease-specific fashion is an exciting challenge for future research.


Assuntos
Complemento C3/metabolismo , Complemento C5/metabolismo , Nefropatias/imunologia , Animais , Humanos , Nefropatias/patologia
19.
Eur J Immunol ; 37(6): 1691-701, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17523212

RESUMO

The complement inhibitor, Crry, which blocks both the classical and alternative pathways, alleviates CNS disease in the lupus model, MRL/MpJ-Tnfrsf6lpr (MRL/lpr) mice. To understand the role of the alternative pathway, we studied mice deficient in a key alternative pathway protein, complement factor B (fB). Immune deposits (IgG and C3) were reduced in the brains of MRL/lpr fB-deficient (fB-/-MRL/lpr) compared to fB-sufficient (MRL/lpr) mice, indicating reduced complement activation. Reduced neutrophil infiltration (22% of MRL/lpr mice) and apoptosis (caspase-3 activity was reduced to 33% of MRL/lpr mice) in these mice indicates that the absence of the alternative pathway was neuroprotective. Furthermore, expression of phospho (p)-Akt (0.16+/-0.02 vs. 0.35+/-0.13, p<0.03) was increased, while expression of p-PTEN (0.40+/-0.06 vs. 0.11+/-0.07, p<0.05) was decreased in fB-/-MRL/lpr mice compared to their MRL/lpr counterparts. The expression of fibronectin, laminin and collagen IV was significantly decreased in fB-/-MRL/lpr mice compared to MRL/lpr mice, indicating that in the lupus setting, tissue integrity was maintained in the absence of the alternative pathway. Absence of fB reduced behavioral alterations in MRL/lpr mice. Our results suggest that in lupus, the alternative pathway may be the key mechanism through which complement activation occurs in brain, and therefore it might serve as a therapeutic target for lupus cerebritis.


Assuntos
Fator B do Complemento/metabolismo , Via Alternativa do Complemento/imunologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Animais , Complexo Antígeno-Anticorpo/análise , Complexo Antígeno-Anticorpo/imunologia , Apoptose/imunologia , Comportamento Animal , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Química Encefálica , Caspase 3/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Complemento C3/análise , Complemento C3/imunologia , Complemento C3d/análise , Complemento C3d/imunologia , Fator B do Complemento/genética , Via Alternativa do Complemento/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Expressão Gênica , Hipocampo/química , Hipocampo/imunologia , Hipocampo/patologia , Imunoglobulina G/análise , Imunoglobulina G/imunologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/patologia , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Immunol ; 178(3): 1819-28, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17237432

RESUMO

The complement system is one of the major ways by which the body detects injury to self cells, and the alternative pathway of complement is rapidly activated within the tubulointerstitium after renal ischemia/reperfusion (I/R). In the current study, we investigate the hypothesis that recognition of tubular injury by the complement system is a major mechanism by which the systemic inflammatory response is initiated. Gene array analysis of mouse kidney following I/R initially identified MIP-2 (CXCL2) and keratinocyte-derived chemokine (KC or CXCL1) as factors that are produced in a complement-dependent fashion. Using in situ hybridization, we next demonstrated that these factors are expressed in tubular epithelial cells of postischemic kidneys. Mouse proximal tubular epithelial cells (PTECs) in culture were then exposed to an intact alternative pathway and were found to rapidly produce both chemokines. Selective antagonism of the C3a receptor significantly attenuated production of MIP-2 and KC by PTECs, whereas C5a receptor antagonism and prevention of membrane attack complex (MAC) formation did not have a significant effect. Treatment of PTECs with an NF-kappaB inhibitor also prevented full expression of these factors in response to an intact alternative pathway. In summary, alternative pathway activation after renal I/R induces production of MIP-2 and KC by PTECs. This innate immune system thereby recognizes hypoxic injury and triggers a systemic inflammatory response through the generation of C3a and subsequent activation of the NF-kappaB system.


Assuntos
Quimiocinas CXC/biossíntese , Quimiocinas/genética , Complemento C3a/genética , Complemento C3a/fisiologia , Células Epiteliais/imunologia , Túbulos Renais/patologia , NF-kappa B/metabolismo , Traumatismo por Reperfusão/imunologia , Animais , Quimiocina CXCL1 , Quimiocina CXCL2 , Quimiocinas CXC/genética , Ativação do Complemento , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Inflamação , Nefropatias , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA