Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 117(1): 201-211, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176281

RESUMO

AIMS: Telomere attrition in cardiomyocytes is associated with decreased contractility, cellular senescence, and up-regulation of proapoptotic transcription factors. Pim1 is a cardioprotective kinase that antagonizes the aging phenotype of cardiomyocytes and delays cellular senescence by maintaining telomere length, but the mechanism remains unknown. Another pathway responsible for regulating telomere length is the transforming growth factor beta (TGFß) signalling pathway where inhibiting TGFß signalling maintains telomere length. The relationship between Pim1 and TGFß has not been explored. This study delineates the mechanism of telomere length regulation by the interplay between Pim1 and components of TGFß signalling pathways in proliferating A549 cells and post-mitotic cardiomyocytes. METHODS AND RESULTS: Telomere length was maintained by lentiviral-mediated overexpression of PIM1 and inhibition of TGFß signalling in A549 cells. Telomere length maintenance was further demonstrated in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1 and by pharmacological inhibition of TGFß signalling. Mechanistically, Pim1 inhibited phosphorylation of Smad2, preventing its translocation into the nucleus and repressing expression of TGFß pathway genes. CONCLUSION: Pim1 maintains telomere lengths in cardiomyocytes by inhibiting phosphorylation of the TGFß pathway downstream effectors Smad2 and Smad3, which prevents repression of telomerase reverse transcriptase. Findings from this study demonstrate a novel mechanism of telomere length maintenance and provide a potential target for preserving cardiac function.


Assuntos
Senescência Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Células A549 , Animais , Humanos , Masculino , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Fosforilação , Proteínas Proto-Oncogênicas c-pim-1/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Telomerase/metabolismo
2.
J Mol Cell Cardiol ; 129: 92-104, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771308

RESUMO

Serum response factor (SRF) and the SRF co-activators myocardin-related transcription factors (MRTFs) are essential for epicardium-derived progenitor cell (EPDC)-mobilization during heart development; however, the impact of developmental EPDC deficiencies on adult cardiac physiology has not been evaluated. Here, we utilize the Wilms Tumor-1 (Wt1)-Cre to delete Mrtfs or Srf in the epicardium, which reduced the number of EPDCs in the adult cardiac interstitium. Deficiencies in Wt1-lineage EPDCs prevented the development of cardiac fibrosis and diastolic dysfunction in aged mice. Mice lacking MRTF or SRF in EPDCs also displayed preservation of cardiac function following myocardial infarction partially due to the depletion of Wt1 lineage-derived cells in the infarct. Interestingly, depletion of Wt1-lineage EPDCs allows for the population of the infarct with a Wt1-negative cell lineage with a reduced fibrotic profile. Taken together, our study conclusively demonstrates the contribution of EPDCs to both ischemic cardiac remodeling and the development of diastolic dysfunction in old age, and reveals the existence of an alternative Wt1-negative source of resident fibroblasts that can populate the infarct.


Assuntos
Envelhecimento/patologia , Fibroblastos/patologia , Isquemia Miocárdica/patologia , Pericárdio/patologia , Animais , Linhagem da Célula , Diástole , Fibrose , Coração/fisiopatologia , Camundongos Knockout , Isquemia Miocárdica/fisiopatologia , Fator de Resposta Sérica/metabolismo , Células-Tronco/metabolismo , Transativadores/metabolismo , Remodelação Ventricular , Proteínas WT1/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(15): E3436-E3445, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581288

RESUMO

Heart disease is associated with the accumulation of resident cardiac fibroblasts (CFs) that secrete extracellular matrix (ECM), leading to the development of pathological fibrosis and heart failure. However, the mechanisms underlying resident CF proliferation remain poorly defined. Here, we report that small proline-rich protein 2b (Sprr2b) is among the most up-regulated genes in CFs during heart disease. We demonstrate that SPRR2B is a regulatory subunit of the USP7/MDM2-containing ubiquitination complex. SPRR2B stimulates the accumulation of MDM2 and the degradation of p53, thus facilitating the proliferation of pathological CFs. Furthermore, SPRR2B phosphorylation by nonreceptor tyrosine kinases in response to TGF-ß1 signaling and free-radical production potentiates SPRR2B activity and cell cycle progression. Knockdown of the Sprr2b gene or inhibition of SPRR2B phosphorylation attenuates USP7/MDM2 binding and p53 degradation, leading to CF cell cycle arrest. Importantly, SPRR2B expression is elevated in cardiac tissue from human heart failure patients and correlates with the proliferative state of patient-derived CFs in a process that is reversed by insulin growth factor-1 signaling. These data establish SPRR2B as a unique component of the USP7/MDM2 ubiquitination complex that drives p53 degradation, CF accumulation, and the development of pathological cardiac fibrosis.


Assuntos
Proliferação de Células , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adulto , Idoso , Animais , Proteínas Ricas em Prolina do Estrato Córneo/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miocárdio/metabolismo , Proteólise , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Stem Cells ; 36(6): 868-880, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29441645

RESUMO

Aging severely limits myocardial repair and regeneration. Delineating the impact of age-associated factors such as short telomeres is critical to enhance the regenerative potential of cardiac progenitor cells (CPCs). We hypothesized that short telomeres activate p53 and induce autophagy to elicit the age-associated change in CPC fate. We isolated CPCs and compared mouse strains with different telomere lengths for phenotypic characteristics of aging. Wild mouse strain Mus musculus castaneus (CAST) possessing short telomeres exhibits early cardiac aging with cardiac dysfunction, hypertrophy, fibrosis, and senescence, as compared with common lab strains FVB and C57 bearing longer telomeres. CAST CPCs with short telomeres demonstrate altered cell fate as characterized by cell cycle arrest, senescence, basal commitment, and loss of quiescence. Elongation of telomeres using a modified mRNA for telomerase restores youthful properties to CAST CPCs. Short telomeres induce autophagy in CPCs, a catabolic protein degradation process, as evidenced by reduced p62 and increased accumulation of autophagic puncta. Pharmacological inhibition of autophagosome formation reverses the cell fate to a more youthful phenotype. Mechanistically, cell fate changes induced by short telomeres are partially p53 dependent, as p53 inhibition rescues senescence and commitment observed in CAST CPCs, coincident with attenuation of autophagy. In conclusion, short telomeres activate p53 and autophagy to tip the equilibrium away from quiescence and proliferation toward differentiation and senescence, leading to exhaustion of CPCs. This study provides the mechanistic basis underlying age-associated cell fate changes that will enable identification of molecular strategies to prevent senescence of CPCs. Stem Cells 2018;36:868-880.


Assuntos
Coração/fisiologia , Células-Tronco/metabolismo , Encurtamento do Telômero/fisiologia , Telômero/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Envelhecimento , Animais , Autofagia , Diferenciação Celular , Humanos , Camundongos
5.
PLoS One ; 12(3): e0173963, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28323876

RESUMO

PIM1, a pro-survival gene encoding a serine/ threonine kinase, influences cell proliferation and survival. Modification of cardiac progenitor cells (CPCs) or cardiomyocytes with PIM1 using a lentivirus-based delivery method showed long-term improved cardiac function after myocardial infarction (MI). However, lentivirus based delivery methods have stringent FDA regulation with respect to clinical trials. To provide an alternative and low risk PIM1 delivery method, this study examined the use of a non-viral modified plasmid-minicircle (MC) as a vehicle to deliver PIM1 into mouse CPCs (mCPCs) in vitro and the myocardium in vivo. MC containing a turbo gfp reporter gene (gfp-MC) was used as a transfection and injection control. PIM1 was subcloned into gfp-MC (PIM1-MC) and then transfected into mCPCs at an efficiency of 29.4±3.7%. PIM1-MC engineered mCPCs (PIM1-mCPCs) exhibit significantly (P<0.05) better survival rate under oxidative treatment. PIM1-mCPCs also exhibit 1.9±0.1 and 2.2±0.2 fold higher cell proliferation at 3 and 5 days post plating, respectively, as compared to gfp-MC transfected mCPCs control. PIM1-MC was injected directly into ten-week old adult FVB female mice hearts in the border zone immediately after MI. Delivery of PIM1 into myocardium was confirmed by GFP+ cardiomyocytes. Mice with PIM1-MC injection showed increased protection compared to gfp-MC injection groups measured by ejection fraction at 3 and 7 days post injury (P = 0.0379 and P = 0.0262 by t-test, respectively). Success of PIM1 delivery and integration into mCPCs in vitro and cardiomyocytes in vivo by MC highlights the possibility of a non-cell based therapeutic approach for treatment of ischemic heart disease and MI.


Assuntos
Terapia Genética/métodos , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Proteínas Proto-Oncogênicas c-pim-1/genética , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Camundongos , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Plasmídeos/genética , Transfecção
6.
Circ Res ; 117(8): 695-706, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26228030

RESUMO

RATIONALE: Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. OBJECTIVE: To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. METHODS AND RESULTS: Two distinct and clonally derived CCs, CC1 and CC2, were used for this study. CCs improved left ventricular anterior wall thickness at 4 weeks post injury, but only CC1 treatment preserved anterior wall thickness at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC+MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC+MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. CONCLUSIONS: CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves on combinatorial cell approaches to support myocardial regeneration.


Assuntos
Infarto Miocárdico de Parede Anterior/cirurgia , Ventrículos do Coração/fisiopatologia , Transplante de Células-Tronco Mesenquimais , Miócitos Cardíacos/transplante , Regeneração , Quimeras de Transplante , Animais , Animais Recém-Nascidos , Infarto Miocárdico de Parede Anterior/metabolismo , Infarto Miocárdico de Parede Anterior/patologia , Infarto Miocárdico de Parede Anterior/fisiopatologia , Biomarcadores/metabolismo , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Sobrevivência de Enxerto , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Camundongos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Comunicação Parácrina , Fenótipo , Ratos , Recuperação de Função Fisiológica , Volume Sistólico , Fatores de Tempo , Transfecção , Função Ventricular Esquerda
7.
J Pathol ; 237(4): 482-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26213100

RESUMO

The low molecular weight protein tyrosine phosphatase (LMPTP), encoded by the ACP1 gene, is a ubiquitously expressed phosphatase whose in vivo function in the heart and in cardiac diseases remains unknown. To investigate the in vivo role of LMPTP in cardiac function, we generated mice with genetic inactivation of the Acp1 locus and studied their response to long-term pressure overload. Acp1(-/-) mice develop normally and ageing mice do not show pathology in major tissues under basal conditions. However, Acp1(-/-) mice are strikingly resistant to pressure overload hypertrophy and heart failure. Lmptp expression is high in the embryonic mouse heart, decreased in the postnatal stage, and increased in the adult mouse failing heart. We also show that LMPTP expression increases in end-stage heart failure in humans. Consistent with their protected phenotype, Acp1(-/-) mice subjected to pressure overload hypertrophy have attenuated fibrosis and decreased expression of fibrotic genes. Transcriptional profiling and analysis of molecular signalling show that the resistance of Acp1(-/-) mice to pathological cardiac stress correlates with marginal re-expression of fetal cardiac genes, increased insulin receptor beta phosphorylation, as well as PKA and ephrin receptor expression, and inactivation of the CaMKIIδ pathway. Our data show that ablation of Lmptp inhibits pathological cardiac remodelling and suggest that inhibition of LMPTP may be of therapeutic relevance for the treatment of human heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Cardiomiopatia de Takotsubo/metabolismo , Animais , Modelos Animais de Doenças , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Ratos
8.
Basic Res Cardiol ; 110(3): 29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25893875

RESUMO

Phase I clinical trials applying autologous progenitor cells to treat heart failure have yielded promising results; however, improvement in function is modest, indicating a need to enhance cardiac stem cell reparative capacity. Notch signaling plays a crucial role in cardiac development, guiding cell fate decisions that underlie myocyte and vessel differentiation. The Notch pathway is retained in the adult cardiac stem cell niche, where level and duration of Notch signal influence proliferation and differentiation of cardiac progenitors. In this study, Notch signaling promotes growth, survival and differentiation of cardiac progenitor cells into smooth muscle lineages in vitro. Cardiac progenitor cells expressing tamoxifen-regulated intracellular Notch1 (CPCeK) are significantly larger and proliferate more slowly than control cells, exhibit elevated mTORC1 and Akt signaling, and are resistant to oxidative stress. Vascular smooth muscle and cardiomyocyte markers increase in CPCeK and are augmented further upon ligand-mediated induction of Notch signal. Paracrine signals indicative of growth, survival and differentiation increase with Notch activity, while markers of senescence are decreased. Adoptive transfer of CPCeK into infarcted mouse myocardium enhances preservation of cardiac function and reduces infarct size relative to hearts receiving control cells. Greater capillary density and proportion of vascular smooth muscle tissue in CPCeK-treated hearts indicate improved vascularization. Finally, we report a previously undescribed signaling mechanism whereby Notch activation stimulates CPC growth, survival and differentiation via mTORC1 and paracrine factor expression. Taken together, these findings suggest that regulated Notch activation potentiates the reparative capacity of CPCs in the treatment of cardiac disease.


Assuntos
Diferenciação Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Receptores Notch/metabolismo , Transplante de Células-Tronco/métodos , Transferência Adotiva , Animais , Linhagem da Célula , Modelos Animais de Doenças , Immunoblotting , Imuno-Histoquímica , Camundongos , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/citologia , Células-Tronco/metabolismo
9.
J Biol Chem ; 290(22): 13935-47, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25882843

RESUMO

Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated ß-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics.


Assuntos
Regulação da Expressão Gênica , Coração/fisiologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Células-Tronco/metabolismo , Apoptose , Ciclo Celular , Núcleo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Proteínas de Fluorescência Verde/metabolismo , Insuficiência Cardíaca , Ventrículos do Coração/metabolismo , Humanos , Lentivirus/metabolismo , Mitocôndrias/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Fenótipo , Regeneração , Células-Tronco/citologia , Frações Subcelulares/metabolismo , beta-Galactosidase/metabolismo
11.
Expert Rev Cardiovasc Ther ; 12(11): 1275-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25340282

RESUMO

Despite the increasing use of stem cells for regenerative-based cardiac therapy, the optimal stem cell population(s) remains in a cloud of uncertainty. In the past decade, the field has witnessed a surge of researchers discovering stem cell populations reported to directly and/or indirectly contribute to cardiac regeneration through processes of cardiomyogenic commitment and/or release of cardioprotective paracrine factors. This review centers upon defining basic biological characteristics of stem cells used for sustaining cardiac integrity during disease and maintenance of communication between the cardiac environment and stem cells. Given the limited successes achieved so far in regenerative therapy, the future requires development of unprecedented concepts involving combinatorial approaches to create and deliver the optimal stem cell(s) that will enhance myocardial healing.


Assuntos
Insuficiência Cardíaca/terapia , Miócitos Cardíacos/citologia , Regeneração/efeitos dos fármacos , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Coração , Humanos , Transplante de Células-Tronco/métodos
12.
EMBO Mol Med ; 6(1): 57-65, 2014 01.
Artigo em Inglês | MEDLINE | ID: mdl-24408966

RESUMO

Diabetes is a multi-organ disease and diabetic cardiomyopathy can result in heart failure, which is a leading cause of morbidity and mortality in diabetic patients. In the liver, insulin resistance contributes to hyperglycaemia and hyperlipidaemia, which further worsens the metabolic profile. Defects in mTOR signalling are believed to contribute to metabolic dysfunctions in diabetic liver and hearts, but evidence is missing that mTOR activation is causal to the development of diabetic cardiomyopathy. This study shows that specific mTORC1 inhibition by PRAS40 prevents the development of diabetic cardiomyopathy. This phenotype was associated with improved metabolic function, blunted hypertrophic growth and preserved cardiac function. In addition PRAS40 treatment improves hepatic insulin sensitivity and reduces systemic hyperglycaemia in obese mice. Thus, unlike rapamycin, mTORC1 inhibition with PRAS40 improves metabolic profile in diabetic mice. These findings may open novel avenues for therapeutic strategies using PRAS40 directed against diabetic-related diseases.


Assuntos
Cardiomiopatias Diabéticas/prevenção & controle , Insulina/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Adenoviridae/genética , Animais , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/etiologia , Dieta Hiperlipídica , Vetores Genéticos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/citologia , Obesidade/complicações , Obesidade/metabolismo , Fenótipo , Fosfoproteínas/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(31): 12661-6, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23842089

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1), necessary for cellular growth, is regulated by intracellular signaling mediating inhibition of mTORC1 activation. Among mTORC1 regulatory binding partners, the role of Proline Rich AKT Substrate of 40 kDa (PRAS40) in controlling mTORC1 activity and cellular growth in response to pathological and physiological stress in the heart has never been addressed. This report shows PRAS40 is regulated by AKT in cardiomyocytes and that AKT-driven phosphorylation relieves the inhibitory function of PRAS40. PRAS40 overexpression in vitro blocks mTORC1 in cardiomyocytes and decreases pathological growth. Cardiomyocyte-specific overexpression in vivo blunts pathological remodeling after pressure overload and preserves cardiac function. Inhibition of mTORC1 by PRAS40 preferentially promotes protective mTORC2 signaling in chronic diseased myocardium. In contrast, strong PRAS40 phosphorylation by AKT allows for physiological hypertrophy both in vitro and in vivo, whereas cardiomyocyte-specific overexpression of a PRAS40 mutant lacking capacity for AKT-phosphorylation inhibits physiological growth in vivo, demonstrating that AKT-mediated PRAS40 phosphorylation is necessary for induction of physiological hypertrophy. Therefore, PRAS40 phosphorylation acts as a molecular switch allowing mTORC1 activation during physiological growth, opening up unique possibilities for therapeutic regulation of the mTORC1 complex to mitigate pathologic myocardial hypertrophy by PRAS40.


Assuntos
Cardiomegalia/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/terapia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Proteínas Musculares/genética , Mutação , Miócitos Cardíacos/patologia , Fosfoproteínas/genética , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética
14.
Proc Natl Acad Sci U S A ; 110(15): 5969-74, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530233

RESUMO

Mitochondrial morphological dynamics affect the outcome of ischemic heart damage and pathogenesis. Recently, mitochondrial fission protein dynamin-related protein 1 (Drp1) has been identified as a mediator of mitochondrial morphological changes and cell death during cardiac ischemic injury. In this study, we report a unique relationship between Pim-1 activity and Drp1 regulation of mitochondrial morphology in cardiomyocytes challenged by ischemic stress. Transgenic hearts overexpressing cardiac Pim-1 display reduction of total Drp1 protein levels, increased phosphorylation of Drp1-(S637), and inhibition of Drp1 localization to the mitochondria. Consistent with these findings, adenoviral-induced Pim-1 neonatal rat cardiomyocytes (NRCMs) retain a reticular mitochondrial phenotype after simulated ischemia (sI) and decreased Drp1 mitochondrial sequestration. Interestingly, adenovirus Pim-dominant negative NRCMs show increased expression of Bcl-2 homology 3 (BH3)-only protein p53 up-regulated modulator of apoptosis (PUMA), which has been previously shown to induce Drp1 accumulation at mitochondria and increase sensitivity to apoptotic stimuli. Overexpression of the p53 up-regulated modulator of apoptosis-dominant negative adenovirus attenuates localization of Drp1 to mitochondria in adenovirus Pim-dominant negative NRCMs promotes reticular mitochondrial morphology and inhibits cell death during sI. Therefore, Pim-1 activity prevents Drp1 compartmentalization to the mitochondria and preserves reticular mitochondrial morphology in response to sI.


Assuntos
Dinaminas/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/fisiologia , Adenoviridae/genética , Animais , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Ratos
15.
Circ Res ; 112(3): 476-86, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23243208

RESUMO

RATIONALE: Short-term ß-adrenergic stimulation promotes contractility in response to stress but is ultimately detrimental in the failing heart because of accrual of cardiomyocyte death. Endogenous cardiac progenitor cell (CPC) activation may partially offset cardiomyocyte losses, but consequences of long-term ß-adrenergic drive on CPC survival and proliferation are unknown. OBJECTIVE: We sought to determine the relationship between ß-adrenergic activity and regulation of CPC function. METHODS AND RESULTS: Mouse and human CPCs express only ß2 adrenergic receptor (ß2-AR) in conjunction with stem cell marker c-kit. Activation of ß2-AR signaling promotes proliferation associated with increased AKT, extracellular signal-regulated kinase 1/2, and endothelial NO synthase phosphorylation, upregulation of cyclin D1, and decreased levels of G protein-coupled receptor kinase 2. Conversely, silencing of ß2-AR expression or treatment with ß2-antagonist ICI 118, 551 impairs CPC proliferation and survival. ß1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by metoprolol. Efficacy of ß1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium. CONCLUSIONS: ß-adrenergic stimulation promotes expansion and survival of CPCs through ß2-AR, but acquisition of ß1-AR on commitment to the myocyte lineage results in loss of CPCs and early myocyte precursors.


Assuntos
Proliferação de Células , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Morte Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Ciclina D1/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/transplante , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Interferência de RNA , Receptores Adrenérgicos beta 1/efeitos dos fármacos , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais/efeitos dos fármacos , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Fatores de Tempo , Transfecção
16.
J Am Coll Cardiol ; 60(14): 1278-87, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22841153

RESUMO

OBJECTIVES: The goal of this study was to demonstrate the enhancement of human cardiac progenitor cell (hCPC) reparative and regenerative potential by genetic modification for the treatment of myocardial infarction. BACKGROUND: Regenerative potential of stem cells to repair acute infarction is limited. Improved hCPC survival, proliferation, and differentiation into functional myocardium will increase efficacy and advance translational implementation of cardiac regeneration. METHODS: hCPCs isolated from the myocardium of heart failure patients undergoing left ventricular assist device implantation were engineered to express green fluorescent protein (hCPCe) or Pim-1-GFP (hCPCeP). Functional tests of hCPC regenerative potential were performed with immunocompromised mice by using intramyocardial adoptive transfer injection after infarction. Myocardial structure and function were monitored by echocardiographic and hemodynamic assessment for 20 weeks after delivery. hCPCe and hCPCeP expressing luciferase were observed by using bioluminescence imaging to noninvasively track persistence. RESULTS: hCPCeP exhibited augmentation of reparative potential relative to hCPCe control cells, as shown by significantly increased proliferation coupled with amelioration of infarction injury and increased hemodynamic performance at 20 weeks post-transplantation. Concurrent with enhanced cardiac structure and function, hCPCeP demonstrated increased cellular engraftment and differentiation with improved vasculature and reduced infarct size. Enhanced persistence of hCPCeP versus hCPCe was revealed by bioluminescence imaging at up to 8 weeks post-delivery. CONCLUSIONS: Genetic engineering of hCPCs with Pim-1 enhanced repair of damaged myocardium. Ex vivo gene delivery to modify stem cells has emerged as a viable option addressing current limitations in the field. This study demonstrates that efficacy of hCPCs from the failing myocardium can be safely and significantly enhanced through expression of Pim-1 kinase, setting the stage for use of engineered cells in pre-clinical settings.


Assuntos
Engenharia Genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Proliferação de Células , Ecocardiografia , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemodinâmica , Humanos , Medições Luminescentes , Camundongos , Miócitos Cardíacos/enzimologia , Neovascularização Patológica , Proteínas Proto-Oncogênicas c-pim-1/genética , Transplante de Células-Tronco , Células-Tronco/enzimologia
17.
Circ Res ; 111(1): 77-86, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22619278

RESUMO

RATIONALE: Bone marrow-derived cells to treat myocardial injury improve cardiac function and support beneficial cardiac remodeling. However, survival of stem cells is limited due to low proliferation of transferred cells. OBJECTIVE: To demonstrate long-term potential of c-kit(+) bone marrow stem cells (BMCs) enhanced with Pim-1 kinase to promote positive cardiac remodeling. METHODS AND RESULTS: Lentiviral modification of c-kit(+) BMCs to express Pim-1 (BMCeP) increases proliferation and expression of prosurvival proteins relative to BMCs expressing green fluorescent protein (BMCe). Intramyocardial delivery of BMCeP at time of infarction supports improvements in anterior wall dimensions and prevents left ventricle dilation compared with hearts treated with vehicle alone. Reduction of the akinetic left ventricular wall was observed in BMCeP-treated hearts at 4 and 12 weeks after infarction. Early recovery of cardiac function in BMCeP-injected hearts facilitated modest improvements in hemodynamic function up to 12 weeks after infarction between cell-treated groups. Persistence of BMCeP is improved relative to BMCe within the infarct together with increased recruitment of endogenous c-kit(+) cells. Delivery of BMC populations promotes cellular hypertrophy in the border and infarcted regions coupled with an upregulation of hypertrophic genes. Thus, BMCeP treatment yields improved structural remodeling of infarcted myocardium compared with control BMCs. CONCLUSIONS: Genetic modification of BMCs with Pim-1 may serve as a therapeutic approach to promote recovery of myocardial structure. Future approaches may take advantage of salutary BMC actions in conjunction with other stem cell types to increase efficacy of cellular therapy and improve myocardial performance in the injured myocardium.


Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Regeneração , Engenharia Tecidual , Animais , Apoptose , Células da Medula Óssea/patologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Lentivirus/genética , Masculino , Camundongos , Contração Miocárdica , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Fatores de Tempo , Engenharia Tecidual/métodos , Transdução Genética , Ultrassonografia , Função Ventricular Esquerda , Remodelação Ventricular
18.
Physiol Rev ; 91(3): 1023-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742795

RESUMO

One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.


Assuntos
Miocárdio/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Cardiomiopatias/fisiopatologia , Sobrevivência Celular/fisiologia , Ativação Enzimática , Humanos , MicroRNAs/metabolismo , Mitocôndrias/enzimologia , Contração Miocárdica/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Caracteres Sexuais , Transdução de Sinais/fisiologia
19.
Circ Res ; 108(8): 960-70, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21350213

RESUMO

RATIONALE: Stem cell therapies to regenerate damaged cardiac tissue represent a novel approach to treat heart disease. However, the majority of adoptively transferred stem cells delivered to damaged myocardium do not survive long enough to impart protective benefits, resulting in modest functional improvements. Strategies to improve survival and proliferation of stem cells show promise for significantly enhancing cardiac function and regeneration. OBJECTIVE: To determine whether injected cardiac progenitor cells (CPCs) genetically modified to overexpress nuclear Akt (CPCeA) increase structural and functional benefits to infarcted myocardium relative to control CPCs. METHODS AND RESULTS: CPCeA exhibit significantly increased proliferation and secretion of paracrine factors compared with CPCs. However, CPCeA exhibit impaired capacity for lineage commitment in vitro. Infarcted hearts receiving intramyocardial injection of CPCeA have increased recruitment of endogenous c-kit cells compared with CPCs, but neither population provides long-term functional and structural improvements compared with saline-injected controls. Pharmacological inhibition of Akt alleviated blockade of lineage commitment in CPCeA. CONCLUSIONS: Although overexpression of nuclear Akt promotes rapid proliferation and secretion of protective paracrine factors, the inability of CPCeA to undergo lineage commitment hinders their capacity to provide functional or structural benefits to infarcted hearts. Despite enhanced recruitment of endogenous CPCs, lack of functional improvement in CPCeA-treated hearts demonstrates CPC lineage commitment is essential to the regenerative response. Effective stem cell therapies must promote cellular survival and proliferation without inhibiting lineage commitment. Because CPCeA exhibit remarkable proliferative potential, an inducible system mediating nuclear Akt expression could be useful to augment cell therapy approaches.


Assuntos
Núcleo Celular/enzimologia , Regulação Enzimológica da Expressão Gênica , Inibidores do Crescimento/fisiologia , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas c-akt/biossíntese , Células-Tronco/enzimologia , Animais , Linhagem da Célula/genética , Núcleo Celular/patologia , Proliferação de Células , Células Cultivadas , Feminino , Inibidores do Crescimento/biossíntese , Inibidores do Crescimento/genética , Masculino , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miocárdio/citologia , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Células-Tronco/patologia , Relação Estrutura-Atividade
20.
Circ Res ; 106(7): 1265-74, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20203306

RESUMO

RATIONALE: Cardioprotective signaling mediates antiapoptotic actions through multiple mechanisms including maintenance of mitochondrial integrity. Pim-1 kinase is an essential downstream effector of AKT-mediated cardioprotection but the mechanistic basis for maintenance of mitochondrial integrity by Pim-1 remains unexplored. This study details antiapoptotic actions responsible for enhanced cell survival in cardiomyocytes with elevated Pim-1 activity. OBJECTIVE: The purpose of this study is to demonstrate that the cardioprotective kinase Pim-1 acts to inhibit cell death by preserving mitochondrial integrity in cardiomyocytes. METHODS AND RESULTS: A combination of biochemical, molecular, and microscopic analyses demonstrate beneficial effects of Pim-1 on mitochondrial integrity. Pim-1 protein level increases in the mitochondrial fraction with a corresponding decrease in the cytosolic fraction of myocardial lysates from hearts subjected to 30 minutes of ischemia followed by 30 minutes of reperfusion. Cardiac-specific overexpression of Pim-1 results in higher levels of antiapoptotic Bcl-X(L) and Bcl-2 compared to samples from normal hearts. In response to oxidative stress challenge, Pim-1 preserves the inner mitochondrial membrane potential. Ultrastructure of the mitochondria is maintained by Pim-1 activity, which prevents swelling induced by calcium overload. Finally, mitochondria isolated from hearts created with cardiac-specific overexpression of Pim-1 show inhibition of cytochrome c release triggered by a truncated form of proapoptotic Bid. CONCLUSION: Cardioprotective action of Pim-1 kinase includes preservation of mitochondrial integrity during cardiomyopathic challenge conditions, thereby raising the potential for Pim-1 kinase activation as a therapeutic interventional approach to inhibit cell death by antagonizing proapoptotic Bcl-2 family members that regulate the intrinsic apoptotic pathway.


Assuntos
Apoptose , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Animais Recém-Nascidos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Sobrevivência Celular , Células Cultivadas , Citocromos c/metabolismo , Modelos Animais de Doenças , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/ultraestrutura , Dilatação Mitocondrial , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/ultraestrutura , Estresse Oxidativo , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA