Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Ophthalmic Genet ; : 1-5, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957147

RESUMO

BACKGROUND: BCL6 co-repressor (BCOR) gene variants are involved in oculofaciocardiodental (OFCD) syndrome, acute myeloid leukaemia, renal tumours, and photoreceptor degenerative diseases. Here, we describe a British family with a pathogenic heterozygous variant in the BCOR gene causing congenital nuclear cataract. METHODS: Whole-exome sequencing was conducted on an individual affected by X-linked dominant congenital cataract in a three-generation family to establish the underlying genetic basis. Bioinformatics analysis confirmed the variants with damaging pathogenicity scores. RESULTS: A novel likely pathogenic frameshift variant BCOR NM_001123385.1: c.3621del; p.Lys1207AsnfsTer31, was identified and found to co-segregate with the disease in this family. CONCLUSIONS: This is apparently the first report of a variant in BCOR causing X-linked dominant congenital cataract which is potentially isolated or presenting with a remarkably mild systemic phenotype. Our findings extend the genetic basis for congenital cataract and add to the phenotypic spectrum of BCOR variants.

2.
Cells ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891038

RESUMO

Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.


Assuntos
Invasividade Neoplásica , Isomerases de Dissulfetos de Proteínas , Humanos , Linhagem Celular Tumoral , Isomerases de Dissulfetos de Proteínas/metabolismo , Feminino , Regulação para Baixo/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Membrana Nuclear/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Peptídeos e Proteínas de Sinalização Intracelular
3.
Curr Opin Cell Biol ; 86: 102283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989035

RESUMO

Intermediate filaments are critical for cell and tissue homeostasis and for stress responses. Cytoplasmic intermediate filaments form versatile and dynamic assemblies that interconnect cellular organelles, participate in signaling and protect cells and tissues against stress. Here we have focused on their involvement in redox signaling and oxidative stress, which arises in numerous pathophysiological situations. We pay special attention to type III intermediate filaments, mainly vimentin, because it provides a physical interface for redox signaling, stress responses and mechanosensing. Vimentin possesses a single cysteine residue that is a target for multiple oxidants and electrophiles. This conserved residue fine tunes vimentin assembly, response to oxidative stress and crosstalk with other cellular structures. Here we integrate evidence from the intermediate filament and redox biology fields to propose intermediate filaments as redox sentinel networks of the cell. To support this, we appraise how vimentin detects and orchestrates cellular responses to oxidative and electrophilic stress.


Assuntos
Filamentos Intermediários , Filamentos Intermediários/química , Vimentina/análise , Vimentina/metabolismo , Oxirredução
4.
Sci Total Environ ; 902: 165957, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543314

RESUMO

Recent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation. The structure, function and optical properties of lenses were analysed from atomic to millimetre length scales. We measured the short-range order of the lens crystallin proteins using Small Angle X-Ray Scattering (SAXS) at both the SPring-8 and DIAMOND synchrotrons, the profile of the graded refractive index generated by these proteins, the epithelial cell density and organisation and finally the focal length of each lens. The results showed no evidence of a difference between the focal length, the epithelial cell densities, the refractive indices, the interference functions and the short-range order of crystallin proteins (X-ray diffraction patterns) in lens from fish exposed to different radiation doses. It could be argued that animals in the natural environment which developed cataract would be more likely, for example, to suffer predation leading to survivor bias. But the cross-length scale study presented here, by evaluating small scale molecular and cellular changes in the lens (pre-cataract formation) significantly mitigates against this issue.


Assuntos
Catarata , Acidente Nuclear de Chernobyl , Cristalinas , Animais , Espalhamento a Baixo Ângulo , Difração de Raios X , Catarata/etiologia , Catarata/veterinária , Catarata/metabolismo
5.
BMJ Open Ophthalmol ; 8(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37493686

RESUMO

BACKGROUND: A five generation family has been analysed by whole exome sequencing (WES) for genetic associations with the multimorbidities of congenital cataract (CC), retinitis pigmentosa (RP) and Crohn's disease (CD). METHODS: WES was performed for unaffected and affected individuals within the family pedigree followed by bioinformatic analyses of these data to identify disease-causing variants with damaging pathogenicity scores. RESULTS: A novel pathogenic missense variant in WFS1: c.1897G>C; p.V633L, a novel pathogenic nonsense variant in RP1: c.6344T>G; p.L2115* and a predicted pathogenic missense variant in NOD2: c.2104C>T; p.R702W are reported. The three variants cosegregated with the phenotypic combinations of autosomal dominant CC, RP and CD within individual family members. CONCLUSIONS: Here, we report multimorbidity in a family pedigree listed on a CC register, which broadens the spectrum of potential cataract associated genes to include both RP1 and NOD2.


Assuntos
Catarata , Doença de Crohn , Retinose Pigmentar , Humanos , Doença de Crohn/genética , Multimorbidade , Proteínas do Olho/genética , Retinose Pigmentar/epidemiologia , Catarata/epidemiologia , Proteína Adaptadora de Sinalização NOD2/genética , Proteínas Associadas aos Microtúbulos/genética
6.
Cells ; 12(12)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371051

RESUMO

BACKGROUND: BFSP1 (beaded filament structural protein 1) is a plasma membrane, Aquaporin 0 (AQP0/MIP)-associated intermediate filament protein expressed in the eye lens. BFSP1 is myristoylated, a post-translation modification that requires caspase cleavage at D433. Bioinformatic analyses suggested that the sequences 434-452 were α-helical and amphipathic. METHODS AND RESULTS: By CD spectroscopy, we show that the addition of trifluoroethanol induced a switch from an intrinsically disordered to a more α-helical conformation for the residues 434-467. Recombinantly produced BFSP1 fragments containing this amphipathic helix bind to lens lipid bilayers as determined by surface plasmon resonance (SPR). Lastly, we demonstrate by transient transfection of non-lens MCF7 cells that these same BFSP1 C-terminal sequences localise to plasma membranes and to cytoplasmic vesicles. These can be co-labelled with the vital dye, lysotracker, but other cell compartments, such as the nuclear and mitochondrial membranes, were negative. The N-terminal myristoylation of the amphipathic helix appeared not to change either the lipid affinity or membrane localisation of the BFSP1 polypeptides or fragments we assessed by SPR and transient transfection, but it did appear to enhance its helical content. CONCLUSIONS: These data support the conclusion that C-terminal sequences of human BFSP1 distal to the caspase site at G433 have independent membrane binding properties via an adjacent amphipathic helix.


Assuntos
Caspases , Cristalino , Humanos , Caspases/metabolismo , Membrana Celular/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Cristalino/metabolismo , Membranas/metabolismo
7.
Adv Redox Res ; 7: None, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38798747

RESUMO

Ionising radiation (IR) is a cause of lipid peroxidation, and epidemiological data have revealed a correlation between exposure to IR and the development of eye lens cataracts. Cataracts remain the leading cause of blindness around the world. The plasma membranes of lens fibre cells are one of the most cholesterolrich membranes in the human body, forming lipid rafts and contributing to the biophysical properties of lens fibre plasma membrane. Liquid chromatography followed by mass spectrometry was used to analyse bovine eye lens lipid membrane fractions after exposure to 5 and 50 Gy and eye lenses taken from wholebody 2 Gy-irradiated mice. Although cholesterol levels do not change significantly, IR dose-dependant formation of the oxysterols 7ß-hydroxycholesterol, 7-ketocholesterol and 5, 6-epoxycholesterol in bovine lens nucleus membrane extracts was observed. Whole-body X-ray exposure (2 Gy) of 12-week old mice resulted in an increase in 7ß-hydroxycholesterol and 7-ketocholesterol in their eye lenses. Their increase regressed over 24 h in the living lens cortex after IR exposure. This study also demonstrated that the IR-induced fold increase in oxysterols was greater in the mouse lens cortex than the nucleus. Further work is required to elucidate the mechanistic link(s) between oxysterols and IR-induced cataract, but these data evidence for the first time that IR exposure of mice results in oxysterol formation in their eye lenses.

8.
Radiat Res ; 197(1): 7-21, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631790

RESUMO

Ionizing radiation is widely known to induce various kinds of lens cataracts, of which posterior subcapsular cataracts (PSCs) have the highest prevalence. Despite some studies regarding the epidemiology and biology of radiation-induced PSCs, the mechanism underscoring the formation of this type of lesions and their dose dependency remain uncertain. Within the current study, our team investigated the in vivo characteristics of PSCs in B6C3F1 mice (F1-hybrids of BL6 × C3H) that received 0.5-2 Gy γ-ray irradiation after postnatal day 70. For purposes of assessing lenticular damages, spectral domain optical coherence tomography was utilized, and the visual acuity of the mice was measured to analyze their levels of visual impairment, and histological sections were then prepared in to characterize in vivo phenotypes. Three varying in vivo phenotype anterior and posterior lesions were thus revealed and correlated with the applied doses to understand their marginal influence on the visual acuity of the studied mice. Histological data indicated no significantly increased odds ratios for PSCs below a dose of 1 Gy at the end of the observation time. Furthermore, our team demonstrated that when the frequencies of the posterior and anterior lesions were calculated at early time points, their responses were in accordance with a deterministic model, whereas at later time points, their responses were better described via a stochastic model. The current study will aid in honing the current understanding of radiation-induced cataract formation and contributes greatly to addressing the fundamental questions of lens dose response within the field of radiation biology.


Assuntos
Catarata/etiologia , Cristalino/efeitos da radiação , Animais , Feminino , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutação , Radiação Ionizante , Tomografia de Coerência Óptica , Acuidade Visual
9.
Exp Eye Res ; 213: 108808, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762932

RESUMO

Human lens regeneration and the Bag-in-the-Lens (BIL) surgical treatment for cataract both depend upon lens capsule closure for their success. Our studies suggest that the first three days after surgery are critical to their long-term outcomes. Using a rat model of lens regeneration, we evidenced lens epithelial cell (LEC) proliferation increased some 50 fold in the first day before rapidly declining to rates observed in the germinative zone of the contra-lateral, un-operated lens. Cell multi-layering at the lens equator occurred on days 1 and 2, but then reorganised into two discrete layers by day 3. E- and N-cadherin expression preceded cell polarity being re-established during the first week. Aquaporin 0 (AQP0) was first detected in the elongated cells at the lens equator at day 7. Cells at the capsulotomy site, however, behaved very differently expressing the epithelial mesenchymal transition (EMT) markers fibronectin and alpha-smooth muscle actin (SMA) from day 3 onwards. The physical interaction between the apical surfaces of the anterior and posterior LECs from day 3 after surgery preceded cell elongation. In the human BIL sample fibre cell formation was confirmed by both histological and proteome analyses, but the cellular response is less ordered and variable culminating in Soemmerring's ring (SR) formation and sometimes Elschnig's pearls. This we evidence for lenses from a single patient. No bow region or recognisable epithelial-fibre cell interface (EFI) was evident and consequently the fibre cells were disorganised. We conclude that lens cells require spatial and cellular cues to initiate, sustain and produce an optically functional tissue in addition to capsule integrity and the EFI.


Assuntos
Opacificação da Cápsula/metabolismo , Células Epiteliais/fisiologia , Implante de Lente Intraocular , Cristalino/fisiologia , Regeneração/fisiologia , Actinas/metabolismo , Idoso , Animais , Aquaporinas/metabolismo , Caderinas/metabolismo , Proliferação de Células/fisiologia , Células Epiteliais/ultraestrutura , Transição Epitelial-Mesenquimal/fisiologia , Proteínas do Olho/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Cápsula do Cristalino/citologia , Cápsula do Cristalino/cirurgia , Cristalino/ultraestrutura , Masculino , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Animais , Proteínas do Tecido Nervoso/metabolismo , Proteômica , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
10.
Cell Stress Chaperones ; 27(2): 177-188, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235182

RESUMO

Our cluster analysis of the Cancer Genome Atlas for co-expression of HSP27 and CRYAB in breast cancer patients identified three patient groups based on their expression level combination (high HSP27 + low CRYAB; low HSP27 + high CRYAB; similar HSP27 + CRYAB). Our analyses also suggest that there is a statistically significant inverse relationship between HSP27 and CRYAB and known clinicopathological markers in breast cancer. Screening an unbiased 248 breast cancer patient tissue microarray (TMA) for the protein expression of HSP27 and phosphorylated HSP27 (HSP27-82pS) with CRYAB also identified three patient groups based on HSP27 and CRYAB expression levels. TMA24 also had recorded clinical-pathological parameters, such as ER and PR receptor status, patient survival, and TP53 mutation status. High HSP27 protein levels were significant with ER and PR expression. HSP27-82pS associated with the best patient survival (Log Rank test). High CRYAB expression in combination with wild-type TP53 was significant for patient survival, but a different patient outcome was observed when mutant TP53 was combined with high CRYAB expression. Our data suggest that HSP27 and CRYAB have different epichaperome influences in breast cancer, but more importantly evidence the value of a cluster analysis that considers their coexpression. Our approach can deliver convergence for archival datasets as well as those from recent treatment and patient cohorts and can align HSP27 and CRYAB expression to important clinical-pathological features of breast cancer.


Assuntos
Neoplasias da Mama , Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias da Mama/genética , Análise por Conglomerados , Feminino , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/análise , Humanos , Chaperonas Moleculares/análise , Cadeia B de alfa-Cristalina/metabolismo
11.
Sci Rep ; 10(1): 16898, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037268

RESUMO

Organ and tissue development are highly coordinated processes; lens growth and functional integration into the eye (emmetropia) is a robust example. An epithelial monolayer covers the anterior hemisphere of the lens, and its organization is the key to lens formation and its optical properties throughout all life stages. To better understand how the epithelium supports lens function, we have developed a novel whole tissue imaging system using conventional confocal light microscopy and a specialized analysis software to produce three-dimensional maps for the epithelium of intact mouse lenses. The open source software package geometrically determines the anterior pole position, the equatorial diameter, and three-dimensional coordinates for each detected cell in the epithelium. The user-friendly cell maps, which retain global lens geometry, allow us to document age-dependent changes in the C57/BL6J mouse lens cell distribution characteristics. We evidence changes in epithelial cell density and distribution in C57/BL6J mice during the establishment of emmetropia between postnatal weeks 4-6. These epithelial changes accompany a previously unknown spheroid to lentoid shape transition of the lens as detected by our analyses. When combined with key findings from previous mouse genetic and cell biological studies, we suggest a cytoskeleton-based mechanism likely underpins these observations.


Assuntos
Emetropia/fisiologia , Células Epiteliais/fisiologia , Cristalino/fisiologia , Animais , Epitélio/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos
12.
Sci Rep ; 9(1): 10418, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320710

RESUMO

The influence of dose rate on radiation cataractogenesis has yet to be extensively studied. One recent epidemiological investigation suggested that protracted radiation exposure increases radiation-induced cataract risk: cumulative doses of radiation mostly <100 mGy received by US radiologic technologists over 5 years were associated with an increased excess hazard ratio for cataract development. However, there are few mechanistic studies to support and explain such observations. Low-dose radiation-induced DNA damage in the epithelial cells of the eye lens (LECs) has been proposed as a possible contributor to cataract formation and thus visual impairment. Here, 53BP1 foci was used as a marker of DNA damage. Unexpectedly, the number of 53BP1 foci that persisted in the mouse lens samples after γ-radiation exposure increased with decreasing dose-rate at 4 and 24 h. The C57BL/6 mice were exposed to 0.5, 1 and 2 Gy ƴ-radiation at 0.063 and 0.3 Gy/min and also 0.5 Gy at 0.014 Gy/min. This contrasts the data we obtained for peripheral blood lymphocytes collected from the same animal groups, which showed the expected reduction of residual 53BP1 foci with reducing dose-rate. These findings highlight the likely importance of dose-rate in low-dose cataract formation and, furthermore, represent the first evidence that LECs process radiation damage differently to blood lymphocytes.


Assuntos
Cristalino/metabolismo , Cristalino/efeitos da radiação , Lesões por Radiação/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Catarata/metabolismo , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Feminino , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Exposição à Radiação , Radiação Ionizante
13.
Mutat Res Rev Mutat Res ; 779: 68-81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31097153

RESUMO

Ionizing radiation (IR) damages DNA and other macromolecules, including proteins and lipids. Most cell types can repair DNA damage and cycle continuously their macromolecules as a mechanism to remove defective proteins and lipids. In those cells that lack nuclei and other organelles, such as lens fiber cells and mammalian erythrocytes, IR-induced damage to macromolecules is retained because they cannot be easily replenished. Whilst the life span for an erythrocyte is several months, the life span of a human lens is decades. There is very limited turnover in lens macromolecules, therefore the aging process greatly impacts lens structure and function over its lifetime. The lens is a tissue where biomolecular longevity, lifelong retention of its components and continued growth are integral to its homeostasis. These characteristics make the lens an excellent model to study the contribution of retained macromolecular damage over time. Epidemiological data have revealed a significant association between exposure to IR, the loss of lens optical function and the formation of cataracts (cataractogenesis) later in life. Lifestyle, genetic and environmental factors all contribute to cataractogenesis due to their effect on the aging process. Cataract is an iconic age-related disease in humans. IR is a recognised cause of cataract and the occupational lens dose limit is reduced from 150 to 20 mGy / year averaged over 5 years (ICRP Publication 118). Understanding the effects of low dose IR on the lens and its role in cataractogenesis is therefore very important. So we redefine "cataractogenic load" as a term to account for the combined lifestyle, genetic and environmental processes that increase biomolecular damage to lens macromolecules leading to cataract formation. These processes weaken metabolic defenses, increase post-translational protein modifications, and alter the lipid structure and content of the lens. IR exposure is a significant insult to the lens because of free radical generation and the ensuing oxidative stress. We support the concept that damage caused by IR compounds the aging process by increasing the cataractogenic load, hereby accelerating lens aging and its loss of function.


Assuntos
Envelhecimento/efeitos da radiação , Catarata/etiologia , Cristalino/efeitos da radiação , Animais , Humanos , Estresse Oxidativo/efeitos da radiação , Radiação Ionizante
14.
Exp Eye Res ; 185: 107585, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30790544

RESUMO

BFSP1 (beaded filament structural protein 1, filensin) is a cytoskeletal protein expressed in the eye lens. It binds AQP0 in vitro and its C-terminal sequences have been suggested to regulate the water channel activity of AQP0. A myristoylated fragment from the C-terminus of BFSP1 was found in AQP0 enriched fractions. Here we identify BFSP1 as a substrate for caspase-mediated cleavage at several C-terminal sites including D433. Cleavage at D433 exposes a cryptic myristoylation sequence (434-440). We confirm that this sequence is an excellent substrate for both NMT1 and 2 (N-myristoyl transferase). Thus caspase cleavage may promote formation of myristoylated fragments derived from the BFSP1 C-terminus (G434-S665). Myristoylation at G434 is not required for membrane association. Biochemical fractionation and immunogold labeling confirmed that C-terminal BFSP1 fragments containing the myristoylation sequence colocalized with AQP0 in the same plasma membrane compartments of lens fibre cells. To determine the functional significance of the association of BFSP1 G434-S665 sequences with AQP0, we measured AQP0 water permeability in Xenopus oocytes co-transfected with transcripts expressing both AQP0 and various C-terminal domain fragments of BFSP1 generated by caspase cleavage. We found that different fragments dramatically alter the response of AQP0 to different concentrations of Ca2+. The complete C-terminal fragment (G434-S665) eliminates calcium regulation altogether. Shorter fragments can enhance regulation by elevated calcium or reverse the response, indicative of the regulatory potential of BFSP1 with respect to AQP0. In particular, elimination of the myristoylation site by the mutation G434A reverses the order of water permeability sensitivity to different Ca2+ concentrations.


Assuntos
Aquaporinas/metabolismo , Água Corporal/metabolismo , Cálcio/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Processamento de Proteína Pós-Traducional , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Western Blotting , Caspases/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Cristalino/citologia , Células MCF-7/metabolismo , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Dados de Sequência Molecular , Miristatos/metabolismo , Oócitos , Domínios Proteicos , Transfecção , Xenopus laevis , Adulto Jovem
15.
J Biol Chem ; 293(46): 18010-18011, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446601

RESUMO

In the vertebrate eye, limiting oxidation of proteins and lipids is key to maintaining lens function and avoiding cataract formation. A study by Serebryany et al. identifies a surprising contributor to the eye's oxidative defense in their demonstration that γD-crystallin (HγD) functions as an oxidoreductase and uses disulfide exchange to initiate aggregation of mutant crystallins that mimic oxidative damage. These insights suggest a mechanism by which a dynamic pool of closely packed proteins might avoid oxidation-driven protein-folding traps, providing new avenues to understand the basis of a human disease with global impact.


Assuntos
Dissulfetos/metabolismo , Cristalino/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , gama-Cristalinas/metabolismo , Substituição de Aminoácidos , Catarata/fisiopatologia , Cisteína/química , Humanos , Mutação , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , gama-Cristalinas/genética
16.
J Cell Sci ; 130(20): 3437-3445, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29032358

RESUMO

Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.


Assuntos
Filamentos Intermediários/ultraestrutura , Animais , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Citoplasma/fisiologia , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Humanos , Filamentos Intermediários/fisiologia , Mecanotransdução Celular , Modelos Moleculares , Pele/ultraestrutura
17.
Cell Stress Chaperones ; 22(4): 601-611, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28364346

RESUMO

Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).


Assuntos
Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Animais , Cardiopatias/metabolismo , Humanos , Doenças Musculares/metabolismo , Doenças Neurodegenerativas/metabolismo , Agregados Proteicos , Conformação Proteica , Mapas de Interação de Proteínas
19.
Exp Eye Res ; 156: 87-94, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27039707

RESUMO

How the lens ages successfully is a lesson in biological adaption and the emergent properties of its complement of cells and proteins. This living tissue contains some of the oldest proteins in our bodies and yet they remain functional for decades, despite exposure to UV light, to reactive oxygen species and all the other hazards to protein function. This remarkable feat is achieved by a shrewd investment in very stable proteins as lens crystallins, by providing a reservoir of ATP-independent protein chaperones unequalled by any other tissue and by an oxidation-resistant environment. In addition, glutathione, a free radical scavenger, is present in mM concentrations and the plasma membranes contain oxidation-resistant sphingolipids what compromises lens function as it ages? In this review, we examine the role of small molecules in the prevention or causation of cataracts, including those associated with diet, metabolic pathways and drug therapy (steroids).


Assuntos
Catarata/etiologia , Catarata/prevenção & controle , Cristalinas/fisiologia , Dieta , Glutationa/fisiologia , Cristalino/metabolismo , Esfingolipídeos/fisiologia , Envelhecimento/fisiologia , Animais , Antioxidantes/fisiologia , Glucocorticoides/efeitos adversos , Humanos , Redes e Vias Metabólicas , Vitaminas/fisiologia
20.
Mutat Res Rev Mutat Res ; 770(Pt B): 238-261, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27919334

RESUMO

The lens of the eye has long been considered as a radiosensitive tissue, but recent research has suggested that the radiosensitivity is even greater than previously thought. The 2012 recommendation of the International Commission on Radiological Protection (ICRP) to substantially reduce the annual occupational equivalent dose limit for the ocular lens has now been adopted in the European Union and is under consideration around the rest of the world. However, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological, mechanistic evidence at doses <2Gy. This paper aims to present a review of recently published information on the biological and mechanistic aspects of cataracts induced by exposure to ionizing radiation (IR). The data were compiled by assessing the pertinent literature in several distinct areas which contribute to the understanding of IR induced cataracts, information regarding lens biology and general processes of cataractogenesis. Results from cellular and tissue level studies and animal models, and relevant human studies, were examined. The main focus was the biological effects of low linear energy transfer IR, but dosimetry issues and a number of other confounding factors were also considered. The results of this review clearly highlight a number of gaps in current knowledge. Overall, while there have been a number of recent advances in understanding, it remains unknown exactly how IR exposure contributes to opacification. A fuller understanding of how exposure to relatively low doses of IR promotes induction and/or progression of IR-induced cataracts will have important implications for prevention and treatment of this disease, as well as for the field of radiation protection.


Assuntos
Catarata/etiologia , Radiação Ionizante , Animais , Catarata/patologia , Opacidade da Córnea/etiologia , Humanos , Cristalino/metabolismo , Cristalino/fisiologia , Cristalino/efeitos da radiação , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA