RESUMO
The entorhinal cortex (EC), with connections to the hippocampus, amygdala, and neocortex, is a critical, yet still underexplored, contributor to fear memory. Previous research suggests possible heterogeneity of function among its lateral (LEC) and medial (MEC) subregions. However, it is not well established what unique roles these subregions serve as the literature has shown mixed results depending on target of manipulation and type of conditioning used. Few studies have manipulated both the LEC and MEC within the same experiment. The present experiment systematically manipulated LEC and MEC function to examine their potential roles in fear memory expression. Long-Evans rats were trained using either trace or delay fear conditioning. The following day, rats received an N-methyl-D-aspartate (NMDA)-induced lesion to the LEC or MEC or received a sham surgery. Following recovery, rats were given an 8-min context test in the original context. The next day, rats were tested for tone freezing in a novel context with three discrete tone presentations. Further, rats were tested for hyperactivity in an open field under both dark and bright light gradient conditions. Results: Following either LEC or MEC lesion, freezing to context was significantly reduced in both trace and delay conditioned rats. LEC-lesioned rats consistently showed significantly less freezing following tone-offset (trace interval, or equivalent, and intertrial interval) in both trace and delay fear conditioned rats. Conclusions: These data suggest that the LEC may play a role in the expression of a conjunctive representation between the tone and context that mediates the maintenance of post-tone freezing.
RESUMO
The hippocampus is essential for the consolidation of some explicit long-term memories, including trace conditioning. Lesions and pharmacological manipulations of the dorsal hippocampus (DH) have provided strong evidence for its involvement in the acquisition and expression of trace fear memories. However, no studies have specifically targeted DH subregions [CA1 and dentate gyrus (DG)] to determine their involvement in trace fear conditioning. In the present study, rats received bilateral cannulation targeting either the DG or CA1 of the DH. Following surgery, animals were trace fear conditioned. Forty-eight hours following training, rats received bilateral infusions of the AMPA/kainate glutamate receptor antagonist, CNQX, or vehicle. Following the infusion, rats were placed in a novel context for the tone test. Rats that received CNQX into the DG froze significantly less during the tone and trace interval as compared to controls. Rats that received CNQX into the DH CA1 showed no difference in freezing during the tone or trace interval as compared to controls. These data support a role for the DG in the expression of trace tone fear conditioning.
Assuntos
6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Análise de Variância , Animais , Giro Denteado/fisiologia , Reação de Congelamento Cataléptica/efeitos dos fármacos , Masculino , Movimento (Física) , Ratos , Ratos Long-Evans , Fatores de TempoRESUMO
Drug addiction is a chronic disorder associated with recurrent craving and relapse often precipitated by the presence of drug-associated stimuli. Pharmacological and behavioral treatments that disrupt drug-associated stimulus memories could be beneficial in the treatment of addictive disorders. Memory restabilization (or reconsolidation) following retrieval of drug-paired stimuli depends upon the amygdala. Here we assessed whether amygdalar PKA is required for the reconsolidation of an appetitive, cocaine-paired stimulus. Rats were trained to lever press for intravenous cocaine infusions paired with a light/tone conditioned stimulus. After 12 d of acquisition, rats either underwent lever extinction (8-12 d) followed by light/tone reactivation and subsequent cue-induced and cocaine-induced (15 mg/kg, i.p.) reinstatement testing or were subsequently tested to assess the ability of the light/tone stimulus to serve as a conditioned reinforcer in the acquisition of a new instrumental response (nose poking). Bilateral intra-amygdalar infusions of the PKA inhibitor Rp-cAMPS (18 microg per side) given immediately following light/tone stimulus reactivation decreased subsequent cue-induced reinstatement and responding with a conditioned reinforcer, while having no effect on cocaine-induced reinstatement. Intra-amygdalar infusions of Rp-cAMPS made 3 h following reactivation or immediately following no stimulus reactivation had no effect on subsequent cue-induced reinstatement. These data show that memory reconsolidation for a cocaine-paired stimulus is retrieval dependent and time limited and critically depends upon amygdalar PKA.
Assuntos
Tonsila do Cerebelo/metabolismo , Cocaína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Tonsila do Cerebelo/efeitos dos fármacos , Análise de Variância , Animais , Aprendizagem por Associação/efeitos dos fármacos , Condicionamento Operante/fisiologia , Sinais (Psicologia) , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração/métodos , Tionucleotídeos/farmacologiaRESUMO
An abundance of evidence indicates a role for the dorsal hippocampus (DH) in learning and memory. Pavlovian fear conditioning provides a useful model system in which to investigate DH function because conditioning to polymodal contextual cues, but generally not to discrete unimodal cues, depends upon the integrity of the DH. There is some suggestion that the hippocampus may be involved in generalization to discrete auditory stimuli following conditioning, but the available literature offers conflicting results regarding the nature of hippocampus involvement. The present experiments were designed to address a role for the DH in auditory generalization following delay fear conditioning. Rats were trained with two or 16 trials of delay fear conditioning and subsequently given a neurotoxic lesion of the DH or sham surgery. Upon recovery, they were tested for fear conditioned responding to the auditory stimulus they were trained with, as well as generalized responding to a novel auditory stimulus. Sham animals showed substantial generalization to the novel stimulus when trained with two or 16 trials. However, lesion animals showed much less generalization (better discriminative performance) to the novel stimulus following 16 conditioning trials while still showing substantial fear conditioned freezing to the trained stimulus. A second experiment showed that this effect was not the result of a non-associative response to the novel stimulus. We conclude that, with extended training, animals become capable of discriminating between trained and novel stimuli but another hippocampus-dependent process maintains generalized responding.
Assuntos
Estimulação Acústica , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo , Reflexo de Sobressalto/fisiologia , Animais , Reação de Congelamento Cataléptica , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiologia , Masculino , Memória/fisiologia , N-Metilaspartato/toxicidade , Distribuição Aleatória , Ratos , Ratos Long-EvansRESUMO
Cyclin-dependent kinase 5 (Cdk5) regulates dopamine neurotransmission and has been suggested to serve as a homeostatic target of chronic psychostimulant exposure. To study the role of Cdk5 in the modulation of the cellular and behavioral effects of psychoactive drugs of abuse, we developed Cre/loxP conditional knock-out systems that allow temporal and spatial control of Cdk5 expression in the adult brain. Here, we report the generation of Cdk5 conditional knock-out (cKO) mice using the alphaCaMKII promoter-driven Cre transgenic line (CaMKII-Cre). In this model system, loss of Cdk5 in the adult forebrain increased the psychomotor-activating effects of cocaine. Additionally, these CaMKII-Cre Cdk5 cKO mice show enhanced incentive motivation for food as assessed by instrumental responding on a progressive ratio schedule of reinforcement. Behavioral changes were accompanied by increased excitability of medium spiny neurons in the nucleus accumbens (NAc) in Cdk5 cKO mice. To study NAc-specific effects of Cdk5, another model system was used in which recombinant adeno-associated viruses expressing Cre recombinase caused restricted loss of Cdk5 in NAc neurons. Targeted knock-out of Cdk5 in the NAc facilitated cocaine-induced locomotor sensitization and conditioned place preference for cocaine. These results suggest that Cdk5 acts as a negative regulator of neuronal excitability in the NAc and that Cdk5 may govern the behavioral effects of cocaine and motivation for reinforcement.
Assuntos
Cocaína/farmacologia , Corpo Estriado/enzimologia , Quinase 5 Dependente de Ciclina/fisiologia , Motivação , Neurônios/enzimologia , Recompensa , Animais , Corpo Estriado/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/deficiência , Quinase 5 Dependente de Ciclina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacosRESUMO
Higher cognitive functions such as attention have been difficult to model in genetically tractable organisms. In humans, attention-distracting stimuli interfere with trace but not delay conditioning, two forms of associative learning. Attention has also been correlated with activation of anterior cingulate cortex (ACC), but its functional significance is unclear. Here we show that a visual distractor interferes selectively with trace but not delay auditory fear conditioning in mice. Trace conditioning is associated with increased neuronal activity in ACC, as assayed by relative levels of c-fos expression, and is selectively impaired by lesions of this structure. The effects of the ACC lesions are unlikely to be caused by indirect impairment of the hippocampus, which is required for mnemonic aspects of trace conditioning. These data suggest that trace conditioning may be useful for studying neural substrates of attention in mice, and implicate the ACC as one such substrate.
Assuntos
Atenção/fisiologia , Condicionamento Operante/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Giro do Cíngulo/fisiologia , Animais , Mapeamento Encefálico , Regulação da Expressão Gênica/fisiologia , Genes fos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , RNA Mensageiro/genética , Fatores de TempoRESUMO
The present study sought to determine whether post-training excitotoxic lesions of the dorsal hippocampus would disrupt retention of fear conditioned using a trace procedure. Rats were trained using one of six procedures. Forward trace conditioning consisted of 10 trials in which a 16-s tone conditional stimulus (CS) was followed by a 28-s stimulus-free trace interval and then a mild footshock unconditional stimulus (US). We used two forms of delay conditioning where the tone and footshock co-terminated. Short delay used a 16-s tone and long delay used a 46-s tone. Backward trace conditioning was the same as forward trace, except that the order of the CS and US was reversed. CS-only and US-only were similar to forward trace except that the footshock or tone, respectively, was eliminated. One day later, animals received either an N-methyl-D-aspartate (NMDA)-induced lesion of the dorsal hippocampus or sham surgery. One week later, the rats were tested for freezing to the tone in a novel context. The next day, they were tested for freezing to the original training context. Hippocampal lesioned trace conditioned rats showed significantly less freezing during the tone compared with their sham lesioned controls. The lesion did not affect freezing during the tone in delay conditioning, nor in the other training conditions. During the 1-min period after tone offset, there was a trend in all hippocampal lesioned animals toward a deficit in freezing, compared with their corresponding sham lesioned controls, although only short delay, forward and backward trace groups showed a significant deficit. Hippocampal lesions also attenuated contextual conditioning. Thus, the hippocampus is critical for the consolidation and/or expression of a trace fear conditioned stimulus.