Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Cytotherapy ; 25(3): 277-285, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610813

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has revolutionized the gene editing field, making it possible to interrupt, insert or replace a sequence of interest with high precision in the human genome. Its easy design and wide applicability open up a variety of therapeutic alternatives for the treatment of genetic diseases. Indeed, very promising approaches for the correction of hematological disorders have been developed in the recent years, based on the self-renewal and multipotent differentiation properties of hematopoietic stem and progenitor cells, which make this cell subset the ideal target for gene therapy purposes. This technology has been applied in different congenital blood disorders, such as primary immunodeficiencies, X-linked severe combined immunodeficiency, X-linked chronic granulomatous disease or Wiskott-Aldrich syndrome, and inherited bone marrow failure syndromes, such as Fanconi anemia, congenital amegakaryocytic thrombocytopenia or severe congenital neutropenia. Furthermore, CRISPR/Cas9-based gene editing has been implemented successfully as a novel therapy for cancer immunotherapy, by the development of promising strategies such as the use of oncolytic viruses or adoptive cellular therapy to the chimeric antigen receptor-T-cell therapy. Therefore, considering the variety of genes and mutations affected, we can take advantage of the different DNA repair mechanisms by CRISPR/Cas9 in different manners, from homology-directed repair to non-homologous-end-joining to the latest emerging technologies such as base and prime editing. Although the delivery systems into hematopoietic stem and progenitor cells are still the bottleneck of this technology, some of the advances in genome editing shown in this review have already reached a clinical stage and show very promising preliminary results.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Mutação
3.
Front Physiol ; 13: 848261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418876

RESUMO

Today gene therapy is a real therapeutic option to address inherited hematological diseases that could be beneficial for thousands of patients worldwide. Currently, gene therapy is used to treat different monogenic hematological pathologies, including several red blood cell diseases such as ß-thalassemia, sickle cell disease and pyruvate kinase deficiency. This approach is based on addition gene therapy, which consists of the correction of hematopoietic stem cells (HSCs) using lentiviral vectors, which integrate a corrected version of the altered gene. Lentivirally-corrected HSCs generate healthy cells that compensate for the deficiency caused by genetic mutations. Despite its successful results, this approach lacks both control of the integration of the transgene into the genome and endogenous regulation of the therapeutic gene, both of which are important aspects that might be a cause for concern. To overcome these limitations, gene editing is able to correct the altered gene through more precise and safer approaches. Cheap and easy-to-design gene editing tools, such as the CRISPR/Cas9 system, allow the specific correction of the altered gene without affecting the rest of the genome. Inherited erythroid diseases, such as thalassemia, sickle cell disease and Pyruvate Kinase Deficiency, have been the test bed for these gene editing strategies, and promising results are currently being seen. CRISPR/Cas9 system has been successfully used to manipulate globin regulation to re-activate fetal globin chains in adult red blood cells and to compensate for hemoglobin defects. Knock-in at the mutated locus to express the therapeutic gene under the endogenous gene regulatory region has also been accomplished successfully. Thanks to the lessons learned from previous lentiviral gene therapy research and trials, gene editing for red blood cell diseases is rapidly moving from its proof-of-concept to its first exciting results in the clinic. Indeed, patients suffering from ß-thalassemia and sickle cell disease have already been successfully treated with gene editing, which will hopefully inspire the use of gene editing to cure erythroid disorders and many other inherited diseases in the near future.

4.
Mol Ther Methods Clin Dev ; 22: 237-248, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485608

RESUMO

Pyruvate kinase deficiency (PKD), an autosomal-recessive disorder, is the main cause of chronic non-spherocytic hemolytic anemia. PKD is caused by mutations in the pyruvate kinase, liver and red blood cell (P KLR) gene, which encodes for the erythroid pyruvate kinase protein (RPK). RPK is implicated in the last step of anaerobic glycolysis in red blood cells (RBCs), responsible for the maintenance of normal erythrocyte ATP levels. The only curative treatment for PKD is allogeneic hematopoietic stem and progenitor cell (HSPC) transplant, associated with a significant morbidity and mortality, especially relevant in PKD patients. Here, we address the correction of PKD through precise gene editing at the PKLR endogenous locus to keep the tight regulation of RPK enzyme during erythropoiesis. We combined CRISPR-Cas9 system and donor recombinant adeno-associated vector (rAAV) delivery to build an efficient, safe, and clinically applicable system to knock in therapeutic sequences at the translation start site of the RPK isoform in human hematopoietic progenitors. Edited human hematopoietic progenitors efficiently reconstituted human hematopoiesis in primary and secondary immunodeficient mice. Erythroid cells derived from edited PKD-HSPCs recovered normal ATP levels, demonstrating the restoration of RPK function in PKD erythropoiesis after gene editing. Our gene-editing strategy may represent a lifelong therapy to correct RPK functionality in RBCs for PKD patients.

5.
Mol Ther Methods Clin Dev ; 22: 350-359, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34514027

RESUMO

Pyruvate kinase deficiency (PKD) is a rare autosomal recessive disorder caused by mutations in the PKLR gene. PKD is characterized by non-spherocytic hemolytic anemia of variable severity and may be fatal in some cases during early childhood. Although not considered the standard of care, allogeneic stem cell transplantation has been shown as a potentially curative treatment, limited by donor availability, toxicity, and incomplete engraftment. Preclinical studies were conducted to define conditions to enable consistent therapeutic reversal, which were based on our previous data on lentiviral gene therapy for PKD. Improvement of erythroid parameters was identified by the presence of 20%-30% healthy donor cells. A minimum vector copy number (VCN) of 0.2-0.3 was required to correct PKD when corrected cells were transplanted in a mouse model for PKD. Biodistribution and pharmacokinetics studies, with the aim of conducting a global gene therapy clinical trial for PKD patients (RP-L301-0119), demonstrated that genetically corrected cells do not confer additional side effects. Moreover, a clinically compatible transduction protocol with mobilized peripheral blood CD34+ cells was optimized, thus facilitating the efficient transduction on human cells capable of repopulating the hematopoiesis of immunodeficient mice. We established conditions for a curative lentiviral vector gene therapy protocol for PKD.

6.
Stem Cell Res Ther ; 12(1): 124, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579367

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) constitute one of the cell types most frequently used in cell therapy. Although several studies have shown the efficacy of these cells to modulate inflammation in different animal models, the results obtained in human clinical trials have been more modest. Here, we aimed at improving the therapeutic properties of MSCs by inducing a transient expression of two molecules that could enhance two different properties of these cells. With the purpose of improving MSC migration towards inflamed sites, we induced a transient expression of the C-X-C chemokine receptor type 4 (CXCR4). Additionally, to augment the anti-inflammatory properties of MSCs, a transient expression of the anti-inflammatory cytokine, interleukin 10 (IL10), was also induced. METHODS: Human adipose tissue-derived MSCs were transfected with messenger RNAs carrying the codon-optimized versions of CXCR4 and/or IL10. mRNA-transfected MSCs were then studied, first to evaluate whether the characteristic phenotype of MSCs was modified. Additionally, in vitro and also in vivo studies in an LPS-induced inflamed pad model were conducted to evaluate the impact associated to the transient expression of CXCR4 and/or IL10 in MSCs. RESULTS: Transfection of MSCs with CXCR4 and/or IL10 mRNAs induced a transient expression of these molecules without modifying the characteristic phenotype of MSCs. In vitro studies then revealed that the ectopic expression of CXCR4 significantly enhanced the migration of MSCs towards SDF-1, while an increased immunosuppression was associated with the ectopic expression of IL10. Finally, in vivo experiments showed that the co-expression of CXCR4 and IL10 increased the homing of MSCs into inflamed pads and induced an enhanced anti-inflammatory effect, compared to wild-type MSCs. CONCLUSIONS: Our results demonstrate that the transient co-expression of CXCR4 and IL10 enhances the therapeutic potential of MSCs in a local inflammation mouse model, suggesting that these mRNA-modified cells may constitute a new step in the development of more efficient cell therapies for the treatment of inflammatory diseases.


Assuntos
Células-Tronco Mesenquimais , Animais , Movimento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Expressão Ectópica do Gene , Interleucina-10/genética , Células-Tronco Mesenquimais/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais
7.
Haematologica ; 106(6): 1659-1670, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354868

RESUMO

Hematopoietic Stem and Progenitor Cells are crucial in the maintenance of lifelong production of all blood cells. These Stem Cells are highly regulated to maintain homeostasis through a delicate balance between quiescence, self-renewal and differentiation. However, this balance is altered during the hematopoietic recovery after Hematopoietic Stem and Progenitor Cell Transplantation. Transplantation efficacy can be limited by inadequate Hematopoietic Stem Cells number, poor homing, low level of engraftment, or limited self-renewal. As recent evidences indicate that estrogens are involved in regulating the hematopoiesis, we sought to examine whether natural estrogens (estrone or E1, estradiol or E2, estriol or E3 and estetrol or E4) modulate human Hematopoietic Stem and Progenitor Cells. Our results show that human Hematopoietic Stem and Progenitor Cell subsets express estrogen receptors, and whose signaling is activated by E2 and E4 on these cells. Additionally, these natural estrogens cause different effects on human Progenitors in vitro. We found that both E2 and E4 expand human Hematopoietic Stem and Progenitor Cells. However, E4 was the best tolerated estrogen and promoted cell cycle of human Hematopoietic Progenitors. Furthermore, we identified that E2 and, more significantly, E4 doubled human hematopoietic engraftment in immunodeficient mice without altering other Hematopoietic Stem and Progenitor Cells properties. Finally, the impact of E4 on promoting human hematopoietic engraftment in immunodeficient mice might be mediated through the regulation of mesenchymal stromal cells in the bone marrow niche. Together, our data demonstrate that E4 is well tolerated and enhances human reconstitution in immunodeficient mice, directly by modulating human Hematopoietic Progenitor properties and indirectly by interacting with the bone marrow niche. This application might have particular relevance to ameliorate the hematopoietic recovery after myeloablative conditioning, especially when limiting numbers of Hematopoietic Stem and Progenitor Cells are available.


Assuntos
Estrogênios , Transplante de Células-Tronco Hematopoéticas , Animais , Estrogênios/farmacologia , Hematopoese , Células-Tronco Hematopoéticas , Humanos , Camundongos , Condicionamento Pré-Transplante
8.
Gene Ther ; 27(9): 435-450, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32218505

RESUMO

Directed gene therapy mediated by nucleases has become a new alternative to lead targeted integration of therapeutic genes in specific regions in the genome. In this work, we have compared the efficiency of two nuclease types, TALEN and meganucleases (MN), to introduce an EGFP reporter gene in a specific site in a safe harbor locus on chromosome 21 in an intergenic region, named here SH6. The efficiency of targeted integration mediated by SH6v5-MN and SH6-TALEN in HEK-293H cells was up to 16.3 and 15.0%. A stable expression was observed both in the pool of transfected cells and in established pseudoclones, with no detection of off-target integrations by Southern blot. In human hematopoietic stem and progenitor CD34+ cells, the nucleofection process preserved the viability and clonogenic capacity of nucleofected cells, reaching up to 3.1% of specific integration of the transgene in colony forming cells when the SH6-TALEN was used, although no expression of the transgene could be found in these cells. Our results show the possibility to specifically integrate genes at the SH6 locus in CD34+ progenitor cells, although further improvements in the efficacy of the procedure are required before this approach could be used for the gene editing of hematopoietic stem cells in patients with hematopoietic diseases.


Assuntos
Terapia Genética , Células-Tronco Hematopoéticas , Genes Reporter , Humanos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Transgenes
9.
Clin Genet ; 97(1): 89-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31231794

RESUMO

Hematopoietic gene therapy has markedly progressed during the last 15 years both in terms of safety and efficacy. While a number of serious adverse events (SAE) were initially generated as a consequence of genotoxic insertions of gamma-retroviral vectors in the cell genome, no SAEs and excellent outcomes have been reported in patients infused with autologous hematopoietic stem cells (HSCs) transduced with self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC gene therapy have extended the number of monogenic diseases that can be treated with these approaches. Nowadays, evidence of clinical efficacy has been shown not only in primary immunodeficiencies, but also in other hematopoietic diseases, including beta-thalassemia and sickle cell anemia. In addition to the rapid progression of non-targeted gene therapies in the clinic, new approaches based on gene editing have been developed thanks to the discovery of designed nucleases and improved non-integrative vectors, which have markedly increased the efficacy and specificity of gene targeting to levels compatible with its clinical application. Based on advances achieved in the field of gene therapy, it can be envisaged that these therapies will soon be part of the therapeutic approaches used to treat life-threatening diseases of the hematopoietic system.


Assuntos
Anemia Falciforme/terapia , Terapia Genética/tendências , Doenças Hematológicas/terapia , Talassemia beta/terapia , Anemia Falciforme/sangue , Células Sanguíneas/patologia , Células Sanguíneas/transplante , Vetores Genéticos/efeitos adversos , Doenças Hematológicas/sangue , Doenças Hematológicas/patologia , Transplante de Células-Tronco Hematopoéticas/tendências , Células-Tronco Hematopoéticas/citologia , Humanos , Talassemia beta/sangue
10.
PLoS One ; 14(10): e0223775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618280

RESUMO

Pyruvate Kinase Deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene, which encodes the erythroid specific Pyruvate Kinase enzyme. Erythrocytes from PKD patients show an energetic imbalance and are susceptible to hemolysis. Gene editing of hematopoietic stem cells (HSCs) would provide a therapeutic benefit and improve safety of gene therapy approaches to treat PKD patients. In previous studies, we established a gene editing protocol that corrected the PKD phenotype of PKD-iPSC lines through a TALEN mediated homologous recombination strategy. With the goal of moving toward more clinically relevant stem cells, we aim at editing the PKLR gene in primary human hematopoietic progenitors and hematopoietic stem cells (HPSCs). After nucleofection of the gene editing tools and selection with puromycin, up to 96% colony forming units showed precise integration. However, a low yield of gene edited HPSCs was associated to the procedure. To reduce toxicity while increasing efficacy, we worked on i) optimizing gene editing tools and ii) defining optimal expansion and selection times. Different versions of specific nucleases (TALEN and CRISPR-Cas9) were compared. TALEN mRNAs with 5' and 3' added motifs to increase RNA stability were the most efficient nucleases to obtain high gene editing frequency and low toxicity. Shortening ex vivo manipulation did not reduce the efficiency of homologous recombination and preserved the hematopoietic progenitor potential of the nucleofected HPSCs. Lastly, a very low level of gene edited HPSCs were detected after engraftment in immunodeficient (NSG) mice. Overall, we showed that gene editing of the PKLR gene in HPSCs is feasible, although further improvements must to be done before the clinical use of the gene editing to correct PKD.


Assuntos
Edição de Genes/métodos , Células-Tronco Hematopoéticas/citologia , Piruvato Quinase/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Células Cultivadas , Células HEK293 , Células-Tronco Hematopoéticas/química , Humanos , Camundongos
11.
Integr Biol (Camb) ; 9(6): 548-554, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28513735

RESUMO

Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 bacterial immunity system has opened a promising avenue to treat genetic diseases that affect the human hematopoietic stem cells (HSCs). Therefore, finding a highly efficient delivery method capable of modifying the genome in the hard-to-transfect HSCs, combined with the advanced CRISPR-Cas9 system, may meet the challenges for dissecting the hematologic disease mechanisms and facilitate future clinical applications. Here, we developed an effective HSC-specified delivery microfluidic chip to disrupt the cell membrane transiently by inducing rapid mechanical deformation that allowed the delivery of biomaterials into the cytoplasm from the surrounding matrix. Compared with the previous designs, the new nano-silicon-blade structure was specifically optimized for HSCs. Using the silicon substrate, the sharpness and rigidity of the nano-blade constriction was largely enhanced to improve the biomaterials delivery efficiency. We achieved highly efficient delivery results by transporting various macro-molecules into the HSCs. Moreover, the treated HSCs possess high viability and maintain inherent pluripotency after the delivery via the Nano-Blade Chip (NB-Chip). Subsequently, we disrupted the p42 isoform in C/EBPα on the NB-Chip and induced HSCs into a myeloid proliferation behavior. In conclusion, the NB-Chip provides a harmless, rapid and high-throughput gene editing approach for the HSC study and therapeutics.


Assuntos
Edição de Genes/instrumentação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fenômenos Biomecânicos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Sistemas CRISPR-Cas , Sobrevivência Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Edição de Genes/métodos , Humanos , Dispositivos Lab-On-A-Chip , Nanotecnologia , Silício , Transfecção/métodos
13.
EMBO Mol Med ; 6(6): 835-48, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24859981

RESUMO

Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies.


Assuntos
Reprogramação Celular , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Marcação de Genes , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Terapia Genética/métodos , Hematopoese , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo
14.
PLoS One ; 7(3): e33945, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457803

RESUMO

The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-ß1 (TGF-ß(1)) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation.


Assuntos
Células da Medula Óssea/citologia , Fusão Celular , Perfilação da Expressão Gênica , Hepatócitos/citologia , Animais , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Heterocromatina/metabolismo , Hibridização In Situ , Camundongos
15.
Transplantation ; 88(12): 1332-40, 2009 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-20029329

RESUMO

BACKGROUND: Bone marrow transplantation can reverse hepatic protoporphyrin accumulation and prevent the hepatobiliary complications characteristic of erythropoietic protoporphyria. The aim of this study was to assess the recruitment capacity of bone marrow cells in the damaged liver and their possible contribution to the improved or recovered hepatic function in a murine model of erythropoietic protoporphyria (EPP). METHODS: Lethally irradiated female EPP mice were transplanted with bone marrow cells from healthy male mice and were monitored during 12 or 36 weeks. Two groups of animals killed 12 weeks after transplant were also treated with granulocyte colony-stimulating factor. RESULTS: Cell transplantation decreased porphyrin contents in erythrocytes and liver. Improved hepatic structure and function and reduced hepatic fibrosis were observed, especially 36 weeks after transplant. Bone marrow-derived cells (22%-35%) were identified in the liver of recipient mice by means of fluorescence in situ hybridization (chrY-FISH) or green fluorescent protein staining and were characterized by immunofluorescence staining. The livers of recipients contained 20% to 30% myofibroblasts (alpha-smooth muscle actin-positive cells), 40% CK19-positive cells, and 10% to 28% hepatocytes (albumin-positive cells) derived from the donor bone marrow. CONCLUSIONS: Bone marrow-derived cells play a significant role in restoring and regenerating hepatic tissue in EPP mice. Hepatic repair was associated with fibrogenesis, enhanced by granulocyte colony-stimulating factor treatment, and almost normal liver structure and function was observed in the long term (36 weeks posttransplant).


Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea/métodos , Regeneração Hepática/fisiologia , Fígado/patologia , Protoporfiria Eritropoética/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Protoporfiria Eritropoética/tratamento farmacológico , Protoporfiria Eritropoética/patologia , Proteínas Recombinantes , Resultado do Tratamento
16.
Mol Ther ; 17(12): 2000-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19755962

RESUMO

Human erythrocyte R-type pyruvate kinase deficiency (PKD) is a disorder caused by mutations in the PKLR gene that produces chronic nonspherocytic hemolytic anemia. Besides periodic blood transfusion and splenectomy, severe cases require bone marrow (BM) transplant, which makes this disease a good candidate for gene therapy. Here, the normal human R-type pyruvate kinase (hRPK) complementary (cDNA) was expressed in hematopoietic stem cells (HSCs) derived from pklr deficient mice, using a retroviral vector system. These mice show a similar red blood cell phenotype to that observed in human PKD. Transduced HSCs were transplanted into myeloablated adult PKD mice or in utero injected into nonconditioned PKD fetuses. In the myeloablated recipients, the hematological manifestations of PKD were completely resolved and normal percentages of late erythroid progenitors, reticulocyte and erythrocyte counts, hemoglobin levels and erythrocyte biochemistry were restored. Corrected cells preserved their rescuing capacity after secondary and tertiary transplant. When corrected cells were in utero transplanted, partial correction of the erythrocyte disease was obtained, although a very low number of corrected cells became engrafted, suggesting a different efficiency of cell therapy applied in utero. Our data suggest that transduction of human RPK cDNA in PKLR mutated HSCs could be an effective strategy in severe cases of PKD.


Assuntos
Anemia/prevenção & controle , Eritrócitos/enzimologia , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Animais , Diferenciação Celular , Células Cultivadas , Células Precursoras Eritroides/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos , Humanos , Isoenzimas , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Fenótipo , Transdução Genética , Transgenes
17.
Mol Ther ; 14(4): 525-35, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16859999

RESUMO

We have investigated the hematopoietic phenotype of mice with a hypomorphic mutation in the Brca2/Fancd1 gene (Brca2(Delta27/Delta27) mutation). In contrast to observations made in other Fanconi anemia (FA) mouse models, low numbers of hematopoietic colony-forming cells (CFCs) were noted in Brca2(Delta27/Delta27) mice, either young or adult. Additionally, a high incidence of spontaneous chromosomal instability was observed in Brca2(Delta27/Delta27) bone marrow (BM) cells, but not in Brca2(+/Delta27) or Fanca(-/-) BM cells. Although Brca2(Delta27/Delta27) CFCs were not hypersensitive to ionizing radiation, a very severe hematopoietic syndrome was observed in irradiated Brca2(Delta27/Delta27) mice. Conventional BM competition experiments showed a marked repopulation defect in Brca2(Delta27/Delta27) hematopoietic stem cells (HSCs), compared to wild-type HSCs. Moreover, we have observed for the first time in a DNA repair disease model a very significant proliferation defect in Brca2(Delta27/Delta27) HSCs maintained in their natural physiological environment. The progressive repopulation of wild-type HSCs transplanted into unconditioned Brca2(Delta27/Delta27) recipients is reminiscent of the somatic mosaicism phenomenon observed in a number of genetic diseases, including FA. The hematopoietic phenotype associated with the Brca2(Delta27/Delta27) mutation suggests that this FA-D1 mouse model will constitute an important tool for the development of new therapies for FA, including gene therapy.


Assuntos
Anemia de Fanconi/patologia , Sistema Hematopoético/patologia , Animais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células , Aberrações Cromossômicas/induzido quimicamente , Modelos Animais de Doenças , Anemia de Fanconi/classificação , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Deleção de Genes , Transplante de Células-Tronco Hematopoéticas , Sistema Hematopoético/metabolismo , Sistema Hematopoético/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mitomicina/farmacologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Fenótipo
18.
J Hepatol ; 45(3): 429-38, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16846660

RESUMO

BACKGROUND/AIMS: Hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. However, their origin is still unknown. We tested the hypothesis that bone marrow (BM) contributes to the population of HSCs. METHODS: Chimeric mice transplanted with donor BM from collagen alpha1(I)-GFP+ reporter mice were subjected to the bile duct ligation (BDL)-induced liver injury. RESULTS: In response to injury, BM-derived collagen-expressing GFP+ cells were detected in liver tissues of chimeric mice. However, these cells were not activated HSCs in that they did not express alpha-smooth muscle actin or desmin and could not be isolated with the HSC fraction. Meanwhile, the majority of these BM-derived cells co-expressed collagen-GFP+ and CD45+, suggesting that these cells represent a unique population of fibrocytes. Consistent with their lymphoid origin, the number of GFP+CD45+ fibrocytes found in BM and spleen of chimeric mice increased in response to injury. Fibrocytes cultured in the presence of TGF-beta1 differentiated into SMA+desmin+ collagen-producing myofibroblasts, potentially contributing to liver fibrosis. CONCLUSIONS: In response to the BDL-induced liver injury: (i) HSCs do not originate in the BM; (ii) collagen-producing fibrocytes are recruited from the BM to damaged liver.


Assuntos
Células da Medula Óssea/patologia , Fibroblastos/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Desmina/genética , Desmina/metabolismo , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Baço/metabolismo , Baço/patologia , Fator de Crescimento Transformador beta/farmacologia
19.
Hepatology ; 43(1): 108-16, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16374873

RESUMO

The mechanisms for in vivo production of bone marrow-derived hepatocytes (BMDHs) remain largely unclear. We investigated whether granulocyte colony-stimulating factor (G-CSF)-mediated mobilization of hematopoietic cells increases the phenomenon. Recurrent liver injury in mice expressing green fluorescent protein (EGFP) in all hematopoietic-derived cells was produced by 3 months of carbon tetrachloride (CCL4) injections. Histologically, there were necrotic foci with histiocyte-rich infiltrates, but little oval cell proliferation. Subsequently, some animals were mobilized with G-CSF for 1, 2, or 3 weeks. Animals were sacrificed 1 month after growth factor treatment. BMDH percentages were lower than previously reported, though G-CSF mobilization significantly augmented BMDH production in injured livers. BMDHs originating from in vivo fusion were evaluated by transplanting female EGFP+ cells into male mice. Binucleated, EGFP+ hepatocytes with one Y chromosome, indicating fusion, were identified. In conclusion, (1) mobilization of hematopoietic cells increases BMDH production and (2) as with the FAH-null model, the first model demonstrating hematopoietic/hepatocyte fusion, recurring CCl4-induced injury has macrophage-rich infiltrates, a blunted oval cell response, and a predominantly in vivo fusion process for circulating cell engraftment into the liver. These findings open the possibility of using hematopoietic growth factors to treat nonhematopoietic degenerative diseases.


Assuntos
Células da Medula Óssea/citologia , Fusão Celular , Mobilização de Células-Tronco Hematopoéticas , Hepatócitos/fisiologia , Animais , Tetracloreto de Carbono/toxicidade , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Antígenos Comuns de Leucócito/análise , Regeneração Hepática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA