Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34439129

RESUMO

The impact of sex in the development of long-term toxicities affecting the quality of life of cancer survivors has not been investigated experimentally. To address this issue, a series of neurologic and cardiologic endpoints were used to investigate sex-based differences triggered by paclitaxel treatment and radiotherapy exposure. Male and female wild-type (WT) mice were treated with paclitaxel (150 and 300 mg/kg) administered weekly over 6 weeks or exposed to 19 Gy cardiac irradiation. Cohorts were analyzed for behavioral and neurobiologic endpoints to assess systemic toxicity of paclitaxel or cardiovascular endpoints to assess radiotherapy toxicity. Interestingly, female WT mice exhibited enhanced tolerance compared to male WT mice regardless of the treatment regimen. To provide insight into the possible sex-specific protective mechanisms, rhoB-deficient animals and elderly mice (22 months) were used with a focus on the possible contribution of sex hormones, including estrogen. In females, RhoB deficiency and advanced age had no impact on neurocognitive impairment induced by paclitaxel but enhanced cardiac sensitivity to radiotherapy. Conversely, rhoB-deficiency protected males from radiation toxicity. In sum, RhoB was identified as a molecular determinant driving estrogen-dependent cardioprotection in female mice, whereas neuroprotection was not sex hormone dependent. To our knowledge, this study revealed for the first time sex- and organ-specific responses to paclitaxel and radiotherapy.

2.
Cell Mol Neurobiol ; 41(1): 43-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32219603

RESUMO

Müller cells may have stem cell-like capability as they regenerate photoreceptor loss upon injury in some vertebrates, but not in mammals. Indeed, mammalian Müller cells undergo major cellular and molecular changes summarized as reactive gliosis. Transforming growth factor beta (TGFß) isoforms are multifunctional cytokines that play a central role, both in wound healing and in tissue repair. Here, we studied the role of TGFß isoforms and their signaling pathways in response to injury induction during tissue regeneration in zebrafish and scar formation in mouse. Our transcriptome analysis showed a different activation of canonical and non-canonical signaling pathways and how they shaped the injury response. In particular, TGFß3 promotes retinal regeneration via Smad-dependent canonical pathway upon regulation of junb gene family and mycb in zebrafish Müller cells. However, in mice, TGFß1 and TGFß2 evoke the p38MAPK signaling pathway. The activation of this non-canonical pathway leads to retinal gliosis. Thus, the regenerative versus reparative effect of the TGFß pathway observed may rely on the activation of different signaling cascades. This provides one explanation of the different injury response in zebrafish and mouse retina.


Assuntos
Gliose/patologia , Degeneração Retiniana/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Fibrinólise , Fibrose , Gliose/complicações , Gliose/diagnóstico por imagem , Proteínas de Fluorescência Verde/metabolismo , Cinética , Lasers , Sistema de Sinalização das MAP Quinases , Camundongos Transgênicos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Isoformas de Proteínas/metabolismo , Regeneração , Degeneração Retiniana/complicações , Degeneração Retiniana/diagnóstico por imagem , Tomografia de Coerência Óptica , Fator de Crescimento Transformador beta2/metabolismo , Regulação para Cima , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA