Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Cell Dev Biol ; 11: 1197204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427375

RESUMO

Adverse Outcome Pathways (AOPs) are useful tools for assessing the potential risks associated with exposure to various stressors, including chemicals and environmental contaminants. They provide a framework for understanding the causal relationships between different biological events that can lead to adverse outcomes (AO). However, developing an AOP is a challenging task, particularly in identifying the molecular initiating events (MIEs) and key events (KEs) that constitute it. Here, we propose a systems biology strategy that can assist in the development of AOPs by screening publicly available databases, literature with the text mining tool AOP-helpFinder, and pathway/network analyses. This approach is straightforward to use, requiring only the name of the stressor and adverse outcome to be studied. From this, it quickly identifies potential KEs and literature providing mechanistic information on the links between the KEs. The proposed approach was applied to the recently developed AOP 441 on radiation-induced microcephaly, resulting in the confirmation of the KEs that were already present and identification of new relevant KEs, thereby validating the strategy. In conclusion, our systems biology approach represents a valuable tool to simplify the development and enrichment of Adverse Outcome Pathways (AOPs), thus supporting alternative methods in toxicology.

2.
Int J Radiat Biol ; 98(12): 1752-1762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947014

RESUMO

BACKGROUND: Brain development during embryogenesis and in early postnatal life is particularly complex and involves the interplay of many cellular processes and molecular mechanisms, making it extremely vulnerable to exogenous insults, including ionizing radiation (IR). Microcephaly is one of the most frequent neurodevelopmental abnormalities that is characterized by small brain size, and is often associated with intellectual deficiency. Decades of research span from epidemiological data on in utero exposure of the A-bomb survivors, to studies on animal and cellular models that allowed deciphering the most prominent molecular mechanisms leading to microcephaly. The Adverse Outcome Pathway (AOP) framework is used to organize, evaluate and portray the scientific knowledge of toxicological effects spanning different biological levels of organizations, from the initial interaction with molecular targets to the occurrence of a disease or adversity. In the present study, the framework was used in an attempt to organize the current scientific knowledge on microcephaly progression in the context of ionizing radiation (IR) exposure. This work was performed by a group of experts formed during a recent workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. Here we report on the development of a putative AOP for congenital microcephaly resulting from IR exposure based on discussions of the working group and we emphasize the use of a novel machine-learning approach to assist in the screening of the available literature to develop AOPs. CONCLUSION: The expert consultation led to the identification of crucial biological events for the progression of microcephaly upon exposure to IR, and highlighted current knowledge gaps. The machine learning approach was successfully used to screen the existing knowledge and helped to rapidly screen the body of evidence and in particular the epidemiological data. This systematic review approach also ensured that the analysis was sufficiently comprehensive to identify the most relevant data and facilitate rapid and consistent AOP development. We anticipate that as machine learning approaches become more user-friendly through easy-to-use web interface, this would allow AOP development to become more efficient and less time consuming.


Assuntos
Rotas de Resultados Adversos , Microcefalia , Animais , Microcefalia/etiologia , Medição de Risco/métodos , Aprendizado de Máquina , Encaminhamento e Consulta
3.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820706

RESUMO

Metastatic growth of ovarian cancer cells into the peritoneal cavity requires adaptation to various cellular stress factors to facilitate cell survival and growth. Here, we demonstrate the role of PVT1, one such stress induced long non-coding RNA, in ovarian cancer growth and metastasis. PVT1 is an amplified and overexpressed lncRNA in ovarian cancer with strong predictive value for survival and response to targeted therapeutics. We find that expression of PVT1 is regulated by tumor cells in response to cellular stress, particularly loss of cell-cell contacts and changes in matrix rigidity occurring in a YAP1-dependent manner. Induction of PVT1 promotes tumor cell survival, growth, and migration. Conversely, reducing PVT1 levels robustly abrogates metastatic behavior and tumor cell dissemination in cell lines and syngeneic transplantation models in vivo. We find that reducing PVT1 causes widespread changes in the transcriptome leading to alterations in cellular stress response and metabolic pathways including doxorubicin metabolism, which impacts chemosensitivity. Together, these findings implicate PVT1 as a promising therapeutic target to suppress metastasis and chemoresistance in ovarian cancer.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Proliferação de Células/fisiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Mol Oncol ; 16(19): 3410-3435, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35579852

RESUMO

Radiotherapy is the standard of care for breast cancer. However, surviving radioresistant cells can repopulate following treatment and provoke relapse. Better understanding of the molecular mechanisms of radiation resistance may help to improve treatment of radioresistant tumours. To emulate radiation therapy at the cellular level, we exposed MCF7 breast cancer cells to daily radiation doses of 2 Gy up to an accumulated dose of 20 Gy. Fractionally irradiated cells (FIR20) displayed increased clonogenic survival and population doubling time as compared with age-matched sham-irradiated cells and untreated parental MCF7 cells. RNA-sequencing revealed a core signature of 229 mRNAs and 7 circular RNAs of which the expression was significantly altered in FIR20 cells. Dysregulation of several top genes was mirrored at the protein level. The FIR20 cell transcriptome overlapped significantly with canonical radiation response signatures and demonstrated a remarkable commonality with radiation and endocrine therapy resistance expression profiles, suggesting crosstalk between both acquired resistance pathways, as indicated by reduced sensitivity to tamoxifen cytotoxicity of FIR20 cells. Using predictive analyses and functional enrichment, we identified a gene-regulatory network that promotes stemness and inflammatory signalling in FIR20 cells. We propose that these phenotypic traits render breast cancer cells more radioresistant but may at the same time serve as potential targets for combination therapies.


Assuntos
Neoplasias da Mama , Tolerância a Radiação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Fenótipo , RNA Circular , Tolerância a Radiação/genética , Tamoxifeno/farmacologia
5.
PLoS One ; 17(3): e0265281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286349

RESUMO

PURPOSE: The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence. MATERIALS AND METHODS: Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence. RESULTS: Simultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario. CONCLUSIONS: This study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence.


Assuntos
Senescência Celular , Biologia de Sistemas , Células Cultivadas , Raios gama/efeitos adversos , Células Endoteliais da Veia Umbilical Humana , Humanos , Radiobiologia
6.
Front Oncol ; 11: 768493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888245

RESUMO

Understanding the differences in biological response to photon and particle radiation is important for optimal exploitation of particle therapy for cancer patients, as well as for the adequate application of radiation protection measures for astronauts. To address this need, we compared the transcriptional profiles of isolated peripheral blood mononuclear cells 8 h after exposure to 1 Gy of X-rays, carbon ions or iron ions with those of non-irradiated cells using microarray technology. All genes that were found differentially expressed in response to either radiation type were up-regulated and predominantly controlled by p53. Quantitative PCR of selected genes revealed a significantly higher up-regulation 24 h after exposure to heavy ions as compared to X-rays, indicating their prolonged activation. This coincided with increased residual DNA damage as evidenced by quantitative γH2AX foci analysis. Furthermore, despite the converging p53 signature between radiation types, specific gene sets related to the immune response were significantly enriched in up-regulated genes following irradiation with heavy ions. In addition, irradiation, and in particular exposure to carbon ions, promoted transcript variation. Differences in basal and iron ion exposure-induced expression of DNA repair genes allowed the identification of a donor with distinct DNA repair profile. This suggests that gene signatures may serve as a sensitive indicator of individual DNA damage repair capacity. In conclusion, we have shown that photon and particle irradiation induce similar transcriptional pathways, albeit with variable amplitude and timing, but also elicit radiation type-specific responses that may have implications for cancer progression and treatment.

7.
Int J Radiat Biol ; 96(3): 297-323, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31852363

RESUMO

Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.


Assuntos
Neoplasias Induzidas por Radiação/diagnóstico , Radiação Ionizante , Transporte Ativo do Núcleo Celular , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carbono/metabolismo , Ciclo Celular , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Neoplasias/radioterapia , Estresse Oxidativo , Oxigênio/metabolismo , Lesões por Radiação , Proteção Radiológica , Tolerância a Radiação , Radioterapia , Processos Estocásticos
8.
Reprod Toxicol ; 91: 59-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705956

RESUMO

Recent studies highlighted a link between ionizing radiation exposure during neurulation and birth defects such as microphthalmos and anophthalmos. Because the mechanisms underlying these defects remain largely unexplored, we irradiated pregnant C57BL/6J mice (1.0 Gy, X-rays) at embryonic day (E)7.5, followed by histological and gene/protein expression analyses at defined days. Irradiation impaired embryonic development at E9 and we observed a delayed pigmentation of the retinal pigment epithelium (RPE) at E11. In addition, a reduced RNA expression and protein abundance of critical eye-development genes (e.g. Pax6 and Lhx2) was observed. Furthermore, a decreased expression of Mitf, Tyr and Tyrp1 supported the radiation-induced perturbation in RPE pigmentation. Finally, via immunostainings for proliferation (Ki67) and mitosis (phosphorylated histone 3), a decreased mitotic index was observed in the E18 retina after exposure at E7.5. Overall, we propose a plausible etiological model for radiation-induced eye-size defects, with RPE melanogenesis as a major determining factor.


Assuntos
Melaninas/metabolismo , Lesões Experimentais por Radiação/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Raios X/efeitos adversos , Animais , Desenvolvimento Embrionário/efeitos da radiação , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos da radiação , Lesões Experimentais por Radiação/genética , Epitélio Pigmentado da Retina/anormalidades , Epitélio Pigmentado da Retina/metabolismo
9.
Cells ; 8(8)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357500

RESUMO

The exposure of mouse embryos in utero and primary cortical neurons to ionizing radiation results in the P53-dependent activation of a subset of genes that is highly induced during brain development and neuronal maturation, a feature that these genes reportedly share with circular RNAs (circRNAs). Interestingly, some of these genes are predicted to express circular transcripts. In this study, we validated the abundance of the circular transcript variants of four P53 target genes (Pvt1, Ano3, Sec14l5, and Rnf169). These circular variants were overall more stable than their linear counterparts. They were furthermore highly enriched in the brain and their transcript levels continuously increase during subsequent developmental stages (from embryonic day 12 until adulthood), while no further increase could be observed for linear mRNAs beyond post-natal day 30. Finally, whereas radiation-induced expression of P53 target mRNAs peaks early after exposure, several of the circRNAs showed prolonged induction in irradiated embryonic mouse brain, primary mouse cortical neurons, and mouse blood. Together, our results indicate that the circRNAs from these P53 target genes are induced in response to radiation and they corroborate the findings that circRNAs may represent biomarkers of brain age. We also propose that they may be superior to mRNA as long-term biomarkers for radiation exposure.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Neurônios/metabolismo , Neurônios/efeitos da radiação , RNA Circular , Radiação Ionizante , Processamento Alternativo , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Masculino , Neurônios/citologia , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Int J Radiat Biol ; 95(1): 64-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247087

RESUMO

PURPOSE: In order to ensure efficient use of medical resources following a radiological incident, there is an urgent need for high-throughput time-efficient biodosimetry tools. In the present study, we tested the applicability of a gene expression signature for the prediction of exposure dose as well as the time elapsed since irradiation. MATERIALS AND METHODS: We used whole blood samples from seven healthy volunteers as reference samples (X-ray doses: 0, 25, 50, 100, 500, 1000, and 2000 mGy; time points: 8, 12, 24, 36 and 48 h) and samples from seven other individuals as 'blind samples' (20 samples in total). RESULTS: Gene expression values normalized to the reference gene without normalization to the unexposed controls were sufficient to predict doses with a correlation coefficient between the true and the predicted doses of 0.86. Importantly, we could also classify the samples according to the time since exposure with a correlation coefficient between the true and the predicted time point of 0.96. Because of the dynamic nature of radiation-induced gene expression, this feature will be of critical importance for adequate gene expression-based dose prediction in a real emergency situation. In addition, in this study we also compared different methodologies for RNA extraction available on the market and suggested the one most suitable for emergency situation which does not require on-spot availability of any specific reagents or equipment. CONCLUSIONS: Our results represent an important advancement in the application of gene expression for biodosimetry purposes.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Exposição à Radiação/análise , Radiometria/métodos , Relação Dose-Resposta à Radiação , Voluntários Saudáveis , Humanos , Fatores de Tempo
11.
Front Pharmacol ; 8: 570, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993729

RESUMO

Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial aspect for the development of protective measures for cancer patients undergoing particle therapy and for astronauts in space.

12.
Mutat Res Rev Mutat Res ; 771: 59-84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28342453

RESUMO

Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.


Assuntos
Biomarcadores , Radiação Ionizante , Adulto , Criança , Dano ao DNA , Reparo do DNA , Predisposição Genética para Doença , Humanos , Doses de Radiação
13.
Int J Radiat Biol ; 93(1): 2-14, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27707245

RESUMO

PURPOSE: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. RESULTS: The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. CONCLUSIONS: RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.


Assuntos
Bioensaio/métodos , Planejamento em Desastres/organização & administração , Lesões por Radiação/prevenção & controle , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Gestão da Segurança/organização & administração , Emergências , Europa (Continente) , Humanos , Objetivos Organizacionais , Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle , Liberação Nociva de Radioativos/prevenção & controle
14.
Neural Plast ; 2016: 1243527, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382490

RESUMO

Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered.


Assuntos
Encéfalo , Exposição à Radiação/efeitos adversos , Radiação Ionizante , Sobreviventes , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Encéfalo/fisiopatologia , Humanos , Pesquisa , Risco
15.
Front Oncol ; 6: 87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148479

RESUMO

The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated (13)C-ions at the Grand Accélérateur National d'Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy).

16.
BMC Bioinformatics ; 17(1): 212, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170263

RESUMO

BACKGROUND: The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. RESULTS: We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. CONCLUSIONS: BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at: .


Assuntos
Encéfalo/efeitos da radiação , Radiação Ionizante , Pesquisa , Software , Relação Dose-Resposta à Radiação , Humanos
17.
PLoS One ; 11(5): e0155260, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27203085

RESUMO

During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight.


Assuntos
Neurônios/citologia , Neurônios/efeitos da radiação , Ausência de Peso/efeitos adversos , Animais , Apoptose/fisiologia , Apoptose/efeitos da radiação , Califórnio/efeitos adversos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Radiação Cósmica/efeitos adversos , Imuno-Histoquímica , Camundongos , Neuritos/fisiologia , Neuritos/efeitos da radiação , Radiação Ionizante/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simulação de Ausência de Peso , Raios X/efeitos adversos
18.
Sci Rep ; 6: 19251, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26763932

RESUMO

Accurate assessment of the individual exposure dose based on easily accessible samples (e.g. blood) immediately following a radiological accident is crucial. We aimed at developing a robust transcription-based signature for biodosimetry from human peripheral blood mononuclear cells irradiated with different doses of X-rays (0.1 and 1.0 Gy) at a dose rate of 0.26 Gy/min. Genome-wide radiation-induced changes in mRNA expression were evaluated at both gene and exon level. Using exon-specific qRT-PCR, we confirmed that several biomarker genes are alternatively spliced or transcribed after irradiation and that different exons of these genes exhibit significantly different levels of induction. Moreover, a significant number of radiation-responsive genes were found to be genomic neighbors. Using three different classification models we found that gene and exon signatures performed equally well on dose prediction, as long as more than 10 features are included. Together, our results highlight the necessity of evaluating gene expression at the level of single exons for radiation biodosimetry in particular and transcriptional biomarker research in general. This approach is especially advisable for practical gene expression-based biodosimetry, for which primer- or probe-based techniques would be the method of choice.


Assuntos
Splicing de RNA/efeitos da radiação , Radiação , Radiometria , Transcrição Gênica/efeitos da radiação , Adulto , Biomarcadores , Análise por Conglomerados , Relação Dose-Resposta à Radiação , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Transcriptoma , Raios X , Adulto Jovem
19.
Biol Open ; 4(3): 331-44, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25681390

RESUMO

Ionizing radiation is a potent activator of the tumor suppressor gene p53, which itself regulates the transcription of genes involved in canonical pathways such as the cell cycle, DNA repair and apoptosis as well as other biological processes like metabolism, autophagy, differentiation and development. In this study, we performed a meta-analysis on gene expression data from different in vivo and in vitro experiments to identify a signature of early radiation-responsive genes which were predicted to be predominantly regulated by p53. Moreover, we found that several genes expressed different transcript isoforms after irradiation in a p53-dependent manner. Among this gene signature, we identified novel p53 targets, some of which have not yet been functionally characterized. Surprisingly, in contrast to genes from the canonical p53-regulated pathways, our gene signature was found to be highly enriched during embryonic and post-natal brain development and during in vitro neuronal differentiation. Furthermore, we could show that for a number of genes, radiation-responsive transcript variants were upregulated during development and differentiation, while radiation non-responsive variants were not. This suggests that radiation exposure of the developing brain and immature cortical neurons results in the p53-mediated activation of a neuronal differentiation program. Overall, our results further increase the knowledge of the radiation-induced p53 network of the embryonic brain and provide more evidence concerning the importance of p53 and its transcriptional targets during mouse brain development.

20.
J Radiat Res ; 56(1): 11-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25190155

RESUMO

Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated (13)C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type-specific responses to the different radiation types.


Assuntos
Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Íons Pesados , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Células CACO-2 , Carbono , Isótopos de Carbono , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Humanos , Masculino , Doses de Radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA