Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Foods ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790855

RESUMO

Olive oil is a food of great importance in the Mediterranean diet and culture. However, during its production, the olive oil industry generates a large amount of waste by-products that can be an important source of bioactive compounds, such as phenolic compounds and terpenes, revalorizing them in the context of the circular economy. Therefore, it is of great interest to study the distribution and abundance of these bioactive compounds in the different by-products. This research is a screening focused on phytochemical analysis, with particular emphasis on the identification and quantification of the phenolic and terpenic fractions. Both the main products of the olive industry (olives, olive paste and produced oil) and the by-products generated throughout the oil production process (leaf, "alpeorujo", liquid and solid residues generated during decanting commonly named "borras" and washing water) were analyzed. For this purpose, different optimized extraction procedures were performed for each matrix, followed by high-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF/MS) analysis. Although no phenolic alcohols were quantified in the leaf and the presence of secoiridoids was low, this by-product was notable for its flavonoid (720 ± 20 µg/g) and terpene (5000 ± 300 µg/g) contents. "Alpeorujo" presented a complete profile of compounds of interest, being abundant in phenolic alcohols (900 ± 100 µg/g), secoiridoids (4500 ± 500 µg/g) and terpenes (1200 ± 100 µg/g), among others. On the other hand, while the solid residue of the borras was the most abundant in phenolic alcohols (3700 ± 200 µg/g) and secoiridoids (680 ± 20 µg/g), the liquid fraction of this waste was notable for its content of elenolic acid derivatives (1700 ± 100 µg/mL) and phenolic alcohols (3000 ± 300 µg/mL). Furthermore, to our knowledge, this is the first time that the terpene content of this by-product has been monitored, demonstrating that it is an important source of these compounds, especially maslinic acid (120 ± 20 µg/g). Finally, the phytochemical content in wash water was lower than expected, and only elenolic acid derivatives were detected (6 ± 1 µg/mL). The results highlighted the potential of the olive by-products as possible alternative sources of a wide variety of olive bioactive compounds for their revalorization into value-added products.

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732097

RESUMO

The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.


Assuntos
Fármacos Neuroprotetores , Azeite de Oliva , Fenóis , Azeite de Oliva/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Espanha , Ciclo-Oxigenase 2/metabolismo , Acetilcolinesterase/metabolismo , Cromatografia Líquida de Alta Pressão , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Flavonoides/análise , Flavonoides/farmacologia , Flavonoides/química
3.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901783

RESUMO

Alzheimer's Disease (AD) is the cause of around 60-70% of global cases of dementia and approximately 50 million people have been reported to suffer this disease worldwide. The leaves of olive trees (Olea europaea) are the most abundant by-products of the olive grove industry. These by-products have been highlighted due to the wide variety of bioactive compounds such as oleuropein (OLE) and hydroxytyrosol (HT) with demonstrated medicinal properties to fight AD. In particular, the olive leaf (OL), OLE, and HT reduced not only amyloid-ß formation but also neurofibrillary tangles formation through amyloid protein precursor processing modulation. Although the isolated olive phytochemicals exerted lower cholinesterase inhibitory activity, OL demonstrated high inhibitory activity in the cholinergic tests evaluated. The mechanisms underlying these protective effects may be associated with decreased neuroinflammation and oxidative stress via NF-κB and Nrf2 modulation, respectively. Despite the limited research, evidence indicates that OL consumption promotes autophagy and restores loss of proteostasis, which was reflected in lower toxic protein aggregation in AD models. Therefore, olive phytochemicals may be a promising tool as an adjuvant in the treatment of AD.


Assuntos
Doença de Alzheimer , Olea , Humanos , Polifenóis/farmacologia , Olea/química , Iridoides/farmacologia , Glucosídeos Iridoides , Folhas de Planta , Extratos Vegetais/farmacologia
4.
Foods ; 11(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35804677

RESUMO

Medicinal and aromatic plants (MAPs) are potential sources of natural bioactive phytochemical compounds of an incredible worth for the food industry, such as polyphenols. Lamiaceae medicinal and aromatic plants from Granada's high plateau, concretely Origanum bastetanum, Thymus zygis gracilis, Thymus longiflorus, Thymus membranaceus and Ziziphora hispanica, were evaluated under different conventional solid-liquid extraction conditions to obtain extracts enriched in bioactive compounds. Phenolic profile was detected by HPLC-QTOF-MS, identifying a high abundance of bioactive constituents. Furthermore, antioxidant and antiviral activities of the mentioned plants were studied as biological properties of interest for the improvement of food shelf-life. Thus, Origanum bastetanum showed the highest antioxidant potential for all assays. Antiviral activity was also tested against some important foodborne viruses, feline calicivirus (FCV), murine norovirus (MNV) and hepatitis A virus (HAV), with the highest activity obtained for Ziziphora hispanica, Thymus longiflorus and Origanum bastetanum. This research proposes the studied plants as rich sources of bioactive compounds with potential use as preservatives in the food industry.

5.
Foods ; 11(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35267376

RESUMO

Olive leaves, one of the most abundant olive production by-products, have shown incredible potential for their characteristic bioactive compound composition, with unique compounds such as the polyphenol oleuropein. In order to evaluate the bioaccessibility of bioactive compounds present in an olive leaf extract, samples were submitted to an in vitro digestion process following INFOGEST protocol, and qualitative and quantitative characterization of the original extract and digestive samples at different times were carried out using HPLC-ESI-TOF-MS. The analyzed extract presented an abundance of phenolic compounds, such as secoiridoids, with oleuropein being the main identified compound. The in vitro digestion process showed an effect on the phenolic profile of the extract, with a lower recovery in the gastric phase and an increase at the beginning of the intestinal phase. Most of the studied compounds showed high bioaccessibility at the end of the digestion, with oleuropein, ligstroside, and quercetin-3-O-galactoside being among the ones with higher value. These findings show the potential for future use of olive leaf polyphenols. However, further research is needed in order to evaluate the absorption, delivery, and interaction of these compounds with the colon.

6.
Foods ; 10(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34945556

RESUMO

Chia seeds are rich sources of different macro and micronutrients associated with health benefits; thus, they may be considered as a functional food. However, the composition depends on the variety, origin, climate and soil. Here, we show a comprehensive characterization of extractable and non-extractable phenolic compounds of dark chia seed Salvia hispanica L. using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and discuss potential health benefits associated with the presence of a number of nutritional and bioactive compounds. We report that dark chia from Jalisco is a high-fiber food, containing omega-3 polyunsaturated fatty acids, essential amino acids (phenylalanine and tryptophan), and nucleosides (adenosine, guanidine and uridine), and rich in antioxidant phenolic compounds, mainly caffeic acid metabolites. Our data suggest that chia seeds may be used as ingredients for the development of functional foods and dietary supplements.

7.
Electrophoresis ; 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659037

RESUMO

The aim of the present study was to optimize the extraction of phenolic compounds in avocado peel using pressurized liquid extraction (PLE) with GRAS solvents. Response surface methodology (RSM) based on Central Composite Design 22 model was used in order to optimize PLE conditions. Moreover, the effect of air drying temperature on the total polyphenol content (TPC) and individual phenolic compounds concentration were evaluated. The quantification of individual compounds was performed by HPLC-DAD-ESI-TOF-MS. The optimized extraction conditions were 200°C as extraction temperature and 1:1 v/v as ethanol/water ratio. Regarding to the effect of drying, the highest TPC was obtained with a drying temperature of 85°C. Forty seven phenolic compounds were quantified in the obtained extracts, showing that phenolic acids found to be the more stables compounds to drying process, while procyanidins were the more thermolabiles analytes. To our knowledge, this is the first available study in which phenolic compounds extraction was optimized using PLE and such amount of phenolic compounds was quantified in avocado peel. These results confirm that PLE represents a powerful tool to obtain avocado peel extracts with high concentration in bioactive compounds suitable for its use in the food, cosmetic or pharmaceutical sector.

8.
J Pharm Biomed Anal ; 105: 156-162, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25560707

RESUMO

A new differential metabolomic approach has been developed to identify the phenolic cellular metabolites derived from breast cancer cells treated with a supercritical fluid extracted (SFE) olive leaf extract. The SFE extract was previously shown to have significant antiproliferative activity relative to several other olive leaf extracts examined in the same model. Upon SFE extract incubation of JIMT-1 human breast cancer cells, major metabolites were identified by using HPLC coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (ESI-Q-TOF-MS). After treatment, diosmetin was the most abundant intracellular metabolite, and it was accompanied by minor quantities of apigenin and luteolin. To identify the putative antiproliferative mechanism, the major metabolites and the complete extract were assayed for cell cycle, MAPK and PI3K proliferation pathways modulation. Incubation with only luteolin showed a significant effect in cell survival. Luteolin induced apoptosis, whereas the whole olive leaf extract incubation led to a significant cell cycle arrest at the G1 phase. The antiproliferative activity of both pure luteolin and olive leaf extract was mediated by the inactivation of the MAPK-proliferation pathway at the extracellular signal-related kinase (ERK1/2). However, the flavone concentration of the olive leaf extract did not fully explain the strong antiproliferative activity of the extract. Therefore, the effects of other compounds in the extract, probably at the membrane level, must be considered. The potential synergistic effects of the extract also deserve further attention. Our differential metabolomics approach identified the putative intracellular metabolites from a botanical extract that have antiproliferative effects, and this metabolomics approach can be expanded to other herbal extracts or pharmacological complex mixtures.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Olea/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metabolômica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray
9.
Oncotarget ; 5(9): 2344-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24909934

RESUMO

"The dose makes the poison", the common motto of toxicology first expressed by Paracelsus more than 400 years ago, may effectively serve to guide potential applications for metformin and related biguanides in oncology. While Paracelsus' law for the dose-response effect has been commonly exploited for the use of some anti-cancer drugs at lower doses in non-neoplastic diseases (e.g., methotrexate), the opposite scenario also holds true; in other words, higher doses of non-oncology drugs, such as anti-diabetic biguanides, might exert direct anti-neoplastic effects. Here, we propose that, as for any drug, there is a dose range for biguanides that is without any effect, one corresponding to "diabetobiguanides" with a pharmacological effect (e.g., insulin sensitization in type 2 diabetes, prevention of insulin-dependent carcinogenesis, indirect inhibition of insulin and growth factor-dependent cancer growth) but with minimal toxicity and another corresponding to "oncobiguanides" with pharmacological (i.e., direct and strong anticancer activity against cancer cells) as well as toxic effects. Considering that biguanides demonstrate a better safety profile than most oncology drugs in current use, we should contemplate the possibility of administering biguanides through non-conventional routes (e.g., inhaled for carcinomas of the lung, topical for skin cancers, intravenous as an adjunctive therapy, rectal suppositories for rectal cancer) to unambiguously investigate the therapeutic value of high-dose transient biguanide exposure in cancer. Perhaps then, the oncobiguanides, as we call them here, could be viewed as a mechanistically different type of anti-cancer drugs employed at doses notably higher than those used chronically when functioning as diabetobiguanides.


Assuntos
Antineoplásicos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico
10.
Oncotarget ; 4(9): 1484-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23986086

RESUMO

Cancer cells expressing constitutively active phosphatidylinositol-3 kinase (PI3K) are proliferative regardless of the absence of insulin, and they form dietary restriction (DR)-resistant tumors in vivo. Because the binding of insulin to its receptors activates the PI3K/AKT/mammalian target of rapamycin (mTOR) signaling cascade, activating mutations in the PIK3CA oncogene may determine tumor response to DR-like pharmacological strategies targeting the insulin and mTOR pathways. The anti-diabetic drug metformin is a stereotypical DR mimetic that exerts its anti-cancer activity through a dual mechanism involving insulin-related (systemic) and mTOR-related (cell-autonomous) effects. However, it remains unclear whether PIK3CA-activating mutations might preclude the anti-cancer activity of metformin in vivo. To model the oncogenic PIK3CA-driven early stages of cancer, we used the clonal breast cancer cell line MCF10DCIS.com, which harbors the gain-of-function H1047R hot-spot mutation in the catalytic domain of the PI3KCA gene and has been shown to form DR-refractory xenotumors. To model PIK3CA-activating mutations in late stages of cancer, we took advantage of the isogenic conversion of a PIK3CA-wild-type tumor into a PIK3CA H1047R-mutated tumor using the highly metastatic colorectal cancer cell line SW48. MCF10DCIS.com xenotumors, although only modestly affected by treatment with oral metformin (approximately 40% tumor growth inhibition), were highly sensitive to the intraperitoneal (i.p.) administration of metformin, the anti-cancer activity of which increased in a time-dependent manner and reached >80% tumor growth inhibition by the end of the treatment. Metformin treatment via the i.p. route significantly reduced the proliferation factor mitotic activity index (MAI) and decreased tumor cellularity in MCF10DCIS.com cancer tissues. Whereas SW48-wild-type (PIK3CA+/+) cells rapidly formed metformin-refractory xenotumors in mice, ad libitum access to water containing metformin significantly reduced the growth of SW48-mutated (PIK3CAH1047R/+) xenotumors by approximately 50%. Thus, metformin can no longer be considered as a bona fide DR mimetic, at least in terms of anti-cancer activity, because tumors harboring the insulin-unresponsive, DR-resistant, PIK3CA-activating mutation H1047R remain sensitive to the anti-tumoral effects of the drug. Given the high prevalence of PIK3CA mutations in human carcinomas and the emerging role of PIK3CA mutation status in the treatment selection process, these findings might have a significant impact on the design of future trials evaluating the potential of combining metformin with targeted therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Metformina/farmacologia , Fosfatidilinositol 3-Quinases/genética , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Dieta , Feminino , Humanos , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Distribuição Aleatória , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Cycle ; 12(4): 555-78, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23370395

RESUMO

Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated ß-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly "repair" the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.


Assuntos
Envelhecimento/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Iridoides/farmacologia , Longevidade/efeitos dos fármacos , Óleos de Plantas/química , Polifenóis/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Envelhecimento/genética , Animais , Transformação Celular Neoplásica/genética , Dieta Mediterrânea , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Hormese , Humanos , Iridoides/isolamento & purificação , Longevidade/genética , Azeite de Oliva , Polifenóis/isolamento & purificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
12.
Phytochem Anal ; 24(3): 213-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22987739

RESUMO

INTRODUCTION: Olea europaea L. leaves may be considered a cheap, easily available natural source of phenolic compounds. In a previous study we evaluated the possibility of obtaining bioactive phenolic compounds from olive leaves by pressurised liquid extraction (PLE) for their use as natural anti-oxidants. The alimentary use of these kinds of extract makes comprehensive knowledge of their composition essential. OBJECTIVE: To undertake a comprehensive characterisation of two olive-leaf extracts obtained by PLE using high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). METHOD: Olive leaves were extracted by PLE using ethanol and water as extraction solvents at 150°C and 200°C respectively. Separation was carried out in a HPLC system equipped with a C18-column working in a gradient elution programme coupled to ESI-QTOF-MS operating in negative ion mode. RESULTS: This analytical platform was able to detect 48 compounds and tentatively identify 31 different phenolic compounds in these extracts, including secoiridoids, simple phenols, flavonoids, cinnamic-acid derivatives and benzoic acids. Lucidumoside C was also identified for the first time in olive leaves. CONCLUSION: The coupling of HPLC-ESI-QTOF-MS led to the in-depth characterisation of the olive-leaf extracts on the basis of mass accuracy, true isotopic pattern and tandem mass spectrometry (MS/MS) spectra. We may conclude therefore that this analytical tool is very valuable in the study of phenolic compounds in plant matrices.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Olea/química , Fenóis/análise , Extratos Vegetais/análise , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Benzoatos/análise , Cromatografia Líquida de Alta Pressão/instrumentação , Cinamatos/análise , Desenho de Equipamento , Flavonoides/análise , Iridoides/análise , Extração Líquido-Líquido/métodos , Fenóis/química , Extratos Vegetais/química , Polifenóis/análise
13.
Aging (Albany NY) ; 4(7): 480-98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22837425

RESUMO

Metabolomic fingerprint of breast cancer cells treated with the antidiabetic drug metformin revealed a significant accumulation of 5-formimino-tetrahydrofolate, one of the tetrahydrofolate forms carrying activated one-carbon units that are essential for the de novo synthesis of purines and pyrimidines. De novo synthesis of glutathione, a folate-dependent pathway interconnected with one-carbon metabolism was concomitantly depleted in response to metformin. End-product reversal studies demonstrated that thymidine alone leads to a significant but incomplete protection from metformin's cytostatic effects. The addition of the substrate hypoxanthine for the purine salvage pathway produces major rightward shifts in metformin's growth inhibition curves. Metformin treatment failed to activate the DNA repair protein ATM kinase and the metabolic tumor suppressor AMPK when thymidine and hypoxanthine were present in the extracellular milieu. Our current findings suggest for the first time that metformin can function as an antifolate chemotherapeutic agent that induces the ATM/AMPK tumor suppressor axis secondarily following the alteration of the carbon flow through the folate-related one-carbon metabolic pathways.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Carbono/metabolismo , Feminino , Glutationa/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Células MCF-7 , Metaboloma , Metformina/uso terapêutico , Nucleotídeos/metabolismo , Purinas , Timidina
14.
J Agric Food Chem ; 59(21): 11491-500, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21939275

RESUMO

Phenolic compounds in extra virgin olive oil (EVOO) have been associated with beneficial effects for health. Indeed, these compounds exert strong antiproliferative effects on many pathological processes, which has stimulated chemical characterization of the large quantities of wastes generated during olive oil production. In this investigation, the potential of byproducts generated during storage of EVOO as a natural source of antioxidant compounds has been evaluated using solid-liquid and liquid-liquid extraction processes followed by rapid resolution liquid chromatography (RRLC) coupled to electrospray time-of-flight and ion trap mass spectrometry (TOF/IT-MS). These wastes contain polyphenols belonging to different classes such as phenolic acids and alcohols, secoiridoids, lignans, and flavones. The relationship between phenolic and derived compounds has been tentatively established on the basis of proposed degradation pathways. Finally, qualitative and quantitative characterizations of solid and aqueous wastes suggest that these byproducts can be considered an important natural source of phenolic compounds, mainly hydroxytyrosol, tyrosol, decarboxymethyl oleuropein aglycone, and luteolin, which, after suitable purification, could be used as food antioxidants or as ingredients in nutraceutical products due to their interesting technological and pharmaceutical properties.


Assuntos
Antioxidantes/análise , Resíduos Industriais/análise , Olea/química , Fenóis/análise , Antioxidantes/isolamento & purificação , Azeite de Oliva , Fenóis/isolamento & purificação , Óleos de Plantas/análise , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA