Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296447

RESUMO

Curcumin (CCM) is one of the most frequently explored plant compounds with various biological actions such as antibacterial, antiviral, antifungal, antineoplastic, and antioxidant/anti-inflammatory properties. The laboratory data and clinical trials have demonstrated that the bioavailability and bioactivity of curcumin are influenced by the feature of the curcumin molecular complex types. Curcumin has a high capacity to form molecular complexes with proteins (such as whey proteins, bovine serum albumin, ß-lactoglobulin), carbohydrates, lipids, and natural compounds (e.g., resveratrol, piperine, quercetin). These complexes increase the bioactivity and bioavailability of curcumin. The current review provides these derivatization strategies for curcumin in terms of biological and physico-chemical aspects with a strong focus on different type of proteins, characterization methods, and thermodynamic features of protein-curcumin complexes, and with the aim of evaluating the best performances. The current literature review offers, taking into consideration various biological effects of the CCM, a whole approach for CCM-biomolecules interactions such as CCM-proteins, CCM-nanomaterials, and CCM-natural compounds regarding molecular strategies to improve the bioactivity as well as the bioavailability of curcumin in biological systems.


Assuntos
Antineoplásicos , Curcumina , Curcumina/farmacologia , Curcumina/química , Disponibilidade Biológica , Antioxidantes/farmacologia , Antioxidantes/química , Resveratrol , Soroalbumina Bovina , Proteínas do Soro do Leite , Quercetina , Antifúngicos , Antineoplásicos/farmacologia , Lactoglobulinas/química , Lipídeos , Antivirais , Carboidratos , Antibacterianos
2.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886867

RESUMO

In recent years, there has been considerable interest in icariin (ICA) and its derivates, icariside II (ICS) and icaritin (ICT), due to their wide range of potential applications in preventing cancer, cardiovascular disease, osteoporosis, delaying the effects of Alzheimer's disease, treating erectile dysfunction, etc. However, their poor water solubility and membrane permeability, resulting in low bioavailability, dampens their potential beneficial effects. In this regard, several strategies have been developed, such as pharmaceutical technologies, structural transformations, and absorption enhancers. All these strategies manage to improve the bioavailability of the above-mentioned flavonoids, thus increasing their concentration in the desired places. This paper focuses on gathering the latest knowledge on strategies to improve bioavailability for enhancing the efficacy of icariin, icariside II, and icaritin. We conclude that there is an opportunity for many further improvements in this field. To the best of our knowledge, no such review articles scoping the bioavailability improvement of icariin and its derivates have been published to date. Therefore, this paper can be a good starting point for all those who want to deepen their understanding of the field.


Assuntos
Flavonoides , Disponibilidade Biológica , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Masculino
3.
Toxins (Basel) ; 12(12)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291729

RESUMO

Aflatoxins (AFs) are harmful secondary metabolites produced by various moulds, among which Aspergillus flavus is the major AF-producer fungus. These mycotoxins have carcinogenic or acute toxigenic effects on both humans and food producing animals and, therefore, the health risks and also the potential economic damages mounted by them have led to legal restrictions, and several countries have set maximum allowable limits for AF contaminations in food and feed. While colonization of food and feed and AF production by A. flavus are highly supported by the climatic conditions in tropical and subtropical geographic regions, countries in the temperate climate zones are also increasingly exposed to AF-derived health risks due to climate change. In the present study, we have reviewed the available mathematical models as risk assessment tools to predict the possibility of A. flavus infection and levels of AF contaminations in maize in a changing climatic environment. After highlighting the benefits and possible future improvements of these models, we summarize the current agricultural practices used to prevent or, at least, mitigate the deleterious consequences of AF contaminations.


Assuntos
Aflatoxinas/análise , Aspergillus flavus , Contaminação de Alimentos/prevenção & controle , Modelos Teóricos , Zea mays/microbiologia , Agricultura/métodos , Mudança Climática , Medição de Risco
4.
Colloids Surf B Biointerfaces ; 135: 726-734, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26340362

RESUMO

Green synthesis of gold nanoparticles capped with resveratrol (GNPs) and their physical and chemical characterization by UV-vis spectra, FTIR, DLS, XRD, TEM and AFM are reported. The GNPs are highly stable, with average diameter of about 20 nm. Then, supramolecular nanoassemblies of GNPs and doxorubicin (Dox), Dox-GNPs complexes, were prepared and morphologically characterized. The stability of these Dox nanocomplexes is high in phosphate buffer saline as estimated by UV-vis spectra, TEM and AFM analysis. Effects of resveratrol (Resv), Resv-Dox mixtures, GNPs and Dox-GNPs complexes on HeLa and CaSki cells, after 24h drug incubation, were assessed using MTT cell viability assay. Results showed strong anticancer activity for Resv-Dox mixtures and Dox-GNPs complexes in the two human cervical carcinoma cell lines. Clearly, both Resv and GNPs can mediate the anticancer activity of Dox at its very low concentration of 0.1 µg/mL, reaching the cytotoxicity of Dox alone, at its concentration up to 20 times higher. Cytotoxic effects of Resv-Dox mixtures and Dox-GNPs complexes have been found for the first time in HeLa and CaSki cells. Furthermore, the apoptosis induction in HeLa and CaSki cells was evidenced for Resv-Dox mixtures and Dox-GNPs complexes by flow cytometry using Annexin V-FITC/propidium iodide cellular staining. For CaSki cells, the apoptosis was also demonstrated, mainly for the treatment with Dox-GNPs complexes, by MTT formazan cellular staining visualized in phase contrast microscopy. Our results provide strong evidence that novel drug delivery vehicles developed on Dox-GNPs nanocomplexes and Resv could have wide applications in cancer diagnosis and treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Ouro/química , Nanopartículas Metálicas , Estilbenos/farmacologia , Neoplasias do Colo do Útero/patologia , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Feminino , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Resveratrol , Análise Espectral , Estilbenos/administração & dosagem , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA