Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 79(11): 2493-2504, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36043416

RESUMO

BACKGROUND: Natural killer (NK) cell impairment is a feature of pulmonary arterial hypertension (PAH) and contributes to vascular remodeling in animal models of disease. Although mutations in BMPR2, the gene encoding the BMP (bone morphogenetic protein) type-II receptor, are strongly associated with PAH, the contribution of BMPR2 loss to NK cell impairment remains unknown. We explored the impairment of IL (interleukin)-15 signaling, a central mediator of NK cell homeostasis, as both a downstream target of BMPR2 loss and a contributor to the pathogenesis of PAH. METHODS: The expression, trafficking, and secretion of IL-15 and IL-15Rα (interleukin 15 α-type receptor) were assessed in human pulmonary artery endothelial cells, with or without BMPR2 silencing. NK cell development and IL-15/IL-15Rα levels were quantified in mice bearing a heterozygous knock-in of the R899X-BMPR2 mutation (bmpr2+/R899X). NK-deficient Il15-/- rats were exposed to the Sugen/hypoxia and monocrotaline models of PAH to assess the impact of impaired IL-15 signaling on disease severity. RESULTS: BMPR2 loss reduced IL-15Rα surface presentation and secretion in human pulmonary artery endothelial cells via impaired trafficking through the trans-Golgi network. bmpr2+/R899X mice exhibited a decrease in NK cells, which was not attributable to impaired hematopoietic development but was instead associated with reduced IL-15/IL-15Rα levels in these animals. Il15-/- rats of both sexes exhibited enhanced disease severity in the Sugen/hypoxia model, with only male Il15-/- rats developing more severe PAH in response to monocrotaline. CONCLUSIONS: This work identifies the loss of IL-15 signaling as a novel BMPR2-dependent contributor to NK cell impairment and pulmonary vascular disease.


Assuntos
Deficiência de GATA2 , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Feminino , Masculino , Ratos , Camundongos , Animais , Hipertensão Pulmonar/etiologia , Interleucina-15/genética , Interleucina-15/metabolismo , Monocrotalina , Células Endoteliais/metabolismo , Deficiência de GATA2/complicações , Deficiência de GATA2/metabolismo , Deficiência de GATA2/patologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Artéria Pulmonar/metabolismo , Hipóxia/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 315(6): L977-L990, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30234375

RESUMO

Natural killer (NK) cells are cytotoxic innate lymphoid cells with an established role in the regulation of vascular structure in pregnancy and cancer. Impaired NK cell function has been identified in patients with pulmonary arterial hypertension (PAH), a disease of obstructive vascular remodeling in the lungs, as well as in multiple rodent models of disease. However, the precise contribution of NK cell impairment to the initiation and progression of PAH remains unknown. Here, we report the development of spontaneous pulmonary hypertension in two independent genetic models of NK cell dysfunction, including Nfil3-/- mice, which are deficient in NK cells due to the absence of the NFIL3 transcription factor, and Ncr1-Gfp mice, which lack the NK activating receptor NKp46. Mouse models of NK insufficiency exhibited increased right ventricular systolic pressure and muscularization of the pulmonary arteries in the absence of elevated left ventricular end-diastolic pressure, indicating that the development of pulmonary hypertension was not secondary to left heart dysfunction. In cases of severe NK cell impairment or loss, a subset of mice failed to develop pulmonary hypertension and instead exhibited reduced systemic blood pressure, demonstrating an extension of vascular abnormalities beyond the pulmonary circulation into the systemic vasculature. In both mouse models, the development of PAH was linked to elevated interleukin-23 production, whereas systemic hypotension in Ncr1-Gfp mice was accompanied by a loss of angiopoietin-2. Together, these results support an important role for NK cells in the regulation of pulmonary and systemic vascular function and the pathogenesis of PAH.


Assuntos
Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Células Matadoras Naturais/patologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Pulmão/patologia , Camundongos , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Artéria Pulmonar/patologia , Remodelação Vascular/genética
3.
Placenta ; 48 Suppl 1: S40-S46, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26880207

RESUMO

Preeclampsia (PE) is a significant gestational disorder affecting 3-5% of all human pregnancies. In many PE pregnancies, maternal plasma is deficient in placental growth factor (PGF), a placentally-produced angiokine. Beyond immediate fetal risks associated with acute termination of the pregnancy, offspring of PE pregnancies (PE-F1) have higher long-term risks for hypertension, stroke, and cognitive impairment compared to F1s from uncomplicated pregnancies. At present, mechanisms that explain PE-F1 gains in postpartum risks are poorly understood. Our laboratory found that mice genetically-deleted for Pgf have altered fetal and adult brain vascular development. This is accompanied by sexually dimorphic alterations in anatomic structure in the adult Pgf-/- brain and impaired cognitive functions. We hypothesize that cerebrovascular and neurological aberrations occur in fetuses exposed to the progressive development of PE and that these brain changes impair cognitive functioning, enhance risk for stroke, elevate severity of stroke, and lead to worse stroke outcomes. These brain and placental outcomes may be linked to down-regulated PGF gene expression in early pre-implantation embryos, prior to gastrulation. This review explores our hypothesis that there are mechanistic links between low PGF detection in maternal plasma prodromal to PE, PE, and altered brain vascular, structural, and functional development amongst PE-F1s. We also include a summary of preliminary outcomes from a pilot study of 7-10 year old children that is the first to report magnetic resonance imaging, magnetic resonance angiography, and functional brain region assessment by eye movement control studies in PE-F1s.


Assuntos
Encéfalo/crescimento & desenvolvimento , Cognição/fisiologia , Fator de Crescimento Placentário/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Distinções e Prêmios , Encéfalo/metabolismo , Feminino , Humanos , Gravidez
4.
Mol Hum Reprod ; 22(2): 130-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26646502

RESUMO

STUDY HYPOTHESIS: Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. STUDY FINDING: PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. WHAT IS KNOWN ALREADY: PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. MAIN RESULTS AND THE ROLE OF CHANCE: Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. LIMITATIONS, REASONS FOR CAUTION: Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF deficiency on cerebrovascular development cannot be separated. However, as PGF was strongly expressed in the developing brain at all timepoints, we suggest that local PGF has a more important role than distant maternal or placental sources. Full PGF loss is not expected in PE pregnancies, predicting that the effects of PGF deficiency identified in this model will be more severe than any effects in PE-offspring. WIDER IMPLICATIONS OF THE FINDINGS: These studies provoke the question of whether PGF expression is decreased and cerebral vascular maldevelopment occurs in fetuses who experience a preeclamptic gestation. These individuals have already been reported to have elevated risk for stroke and cognitive impairments. LARGE SCALE DATA: N/A. STUDY FUNDING AND COMPETING INTERESTS: This work was supported by awards from the Natural Sciences and Engineering Research Council, the Canada Research Chairs Program and the Canadian Foundation for Innovation to B.A.C. and by training awards from the Universidade Federal de Pernambuco and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil to R.L.L.; Queen's University to V.R.K. and the Canadian Institutes of Health Research to M.T.R. The work of P.C. is supported by the Belgian Science Policy BELSPO-IUAP7/03, Structural funding by the Flemish Government-Methusalem funding, and the Flemish Science Fund-FWO grants. There were no competing interests.


Assuntos
Isquemia Encefálica/genética , Encéfalo/metabolismo , Estenose Coronária/genética , Neovascularização Patológica/genética , Proteínas da Gravidez/deficiência , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Estenose Coronária/metabolismo , Estenose Coronária/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Feto , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fator de Crescimento Placentário , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Proteínas da Gravidez/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Reproduction ; 149(2): R91-102, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25342175

RESUMO

Mammalian pregnancy involves tremendous de novo maternal vascular construction to adequately support conceptus development. In early mouse decidua basalis (DB), maternal uterine natural killer (uNK) cells oversee this process directing various aspects during the formation of supportive vascular networks. The uNK cells recruited to early implantation site DB secrete numerous factors that act in the construction of early decidual vessels (neoangiogenesis) as well as in the alteration of the structural components of newly developing and existing vessels (pruning and remodeling). Although decidual and placental development sufficient to support live births occur in the absence of normally functioning uNK cells, development and structure of implantation site are optimized through the presence of normally activated uNK cells. Human NK cells are also recruited to early decidua. Gestational complications including recurrent spontaneous abortion, fetal growth restriction, preeclampsia, and preterm labor are linked with the absence of human NK cell activation via paternally inherited conceptus transplantation antigens. This review summarizes the roles that mouse uNK cells normally play in decidual neoangiogenesis and spiral artery remodeling in mouse pregnancy and briefly discusses changes in early developmental angiogenesis due to placental growth factor deficiency.


Assuntos
Decídua/irrigação sanguínea , Células Matadoras Naturais/fisiologia , Útero/citologia , Aborto Habitual , Aborto Animal , Animais , Feminino , Retardo do Crescimento Fetal , Humanos , Camundongos , Neovascularização Fisiológica , Trabalho de Parto Prematuro , Placenta/irrigação sanguínea , Fator de Crescimento Placentário , Pré-Eclâmpsia , Gravidez , Proteínas da Gravidez/deficiência , Proteínas da Gravidez/fisiologia
6.
J Am Assoc Lab Anim Sci ; 52(5): 560-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24041211

RESUMO

Cannulation of the common carotid artery for chronic, continuous radiotelemetric recording of aortic hemodynamic properties in mice is a highly invasive recovery surgery. Radiotelemetric recording, by its continuous nature, gives the most accurate measurements of hemodynamic variables in experimental animals, and is widely used in the study of cardiovascular diseases including hypertension. The American Heart Association has recommended data acquisition by radiotelemetric recording but did not provide guidelines regarding postoperative analgesic support. We assessed hemodynamic parameters, locomotor activity, food intake, and weight loss in radiotransmitter-implanted CD1 female mice receiving analgesic support during the first 48 h after surgery. The efficacy of analgesic support from the NSAID meloxicam was compared with that of the widely used opioid agonist buprenorphine and the related compound, tramadol. Meloxicam-treated mice recovered lost body weight more rapidly than did tramadol-or buprenorphine-treated mice. Furthermore, meloxicam-treated mice maintained circadian rhythm after surgery and had tighter regulation of mean arterial pressure than did tramadol- or buprenorphine-treated mice. Meloxicam was also superior with regard to food intake, locomotor activity, and limiting variance in hemodynamic parameters. This study indicates that when compared with buprenorphine and tramadol, meloxicam should be the postoperative analgesic of choice for radiotelemeter implantation in mice.


Assuntos
Dor Aguda/prevenção & controle , Buprenorfina/farmacologia , Hemodinâmica/efeitos dos fármacos , Telemetria/veterinária , Tiazinas/farmacologia , Tiazóis/farmacologia , Tramadol/farmacologia , Analgésicos Opioides/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Comportamento Animal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Humanos , Meloxicam , Camundongos , Camundongos Endogâmicos , Período Pós-Operatório , Distribuição Aleatória , Telemetria/efeitos adversos , Telemetria/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA