Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 200: 82-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27344403

RESUMO

Silicon (Si) is a beneficial element to plants, and its absorption via transporters leads to protective effects against biotic and abiotic stresses. In higher plants, two groups of root transporters for Si have been identified: influx transporters (Lsi1) and efflux transporters (Lsi2). Lsi1 transporters belong to the NIPIII aquaporins, and functional Lsi1s have been found in many plants species. Much less is known about Lsi2s that have been characterized in only a few species. Horsetail (Equisetum arvense), known among the highest Si accumulators in the plant kingdom, is a valuable model to study Si absorption and deposition. In this study, we first analyzed discrete Si deposition patterns in horsetail shoots, where ubiquitous silicification differs markedly from that of higher plants. Then, using the sequenced horsetail root transcriptome, two putative Si efflux transporter genes, EaLsi2-1 and EaLsi2-2, were identified. These genes share low sequence similarity with their homologues in higher plants. Further characterisation of EaLsi2-1 in transient expression assay using Nicotiana benthamiana epidermal cells confirmed transmembrane localization. In order to determine their functionality, the EaLsi2-1 was expressed in Xenopus oocytes, confirming that the translated protein was efficient for Si efflux. Both genes were equally expressed in roots and shoots, but interestingly, showed a much higher expression in the shoots than in the roots in contrast to Lsi2s found in other plants, a result consistent with the specific anatomy of horsetail and its rank as one of the highest Si accumulators among plant species.


Assuntos
Equisetum/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Silício/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Clonagem Molecular , DNA Complementar/genética , Equisetum/genética , Genes de Plantas , Proteínas de Membrana Transportadoras/genética , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Alinhamento de Sequência , Xenopus
2.
Plant Mol Biol ; 79(1-2): 35-46, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22351076

RESUMO

Silicon (Si) is known to be beneficial to plants, namely in alleviating biotic and abiotic stresses. The magnitude of such positive effects is associated with a plant's natural ability to absorb Si. Many grasses can accumulate as much as 10% on a dry weight basis while most dicots, including Arabidopsis, will accumulate less than 0.1%. In this report, we describe the cloning and functional characterization of TaLsi1, a wheat Si transporter gene. In addition, we developed a heterologous system for the study of Si uptake in plants by introducing TaLsi1 and OsLsi1, its ortholog in rice, into Arabidopsis, a species with a very low innate Si uptake capacity. When expressed constitutively under the control of the CaMV 35S promoter, both TaLsi1 and OsLsi1 were expressed in cells of roots and shoots. Such constitutive expression of TaLsi1 or OsLsi1 resulted in a fourfold to fivefold increase in Si accumulation in transformed plants compared to WT. However, this Si absorption caused deleterious symptoms. When the wheat transporter was expressed under the control of a root-specific promoter (a boron transporter gene (AtNIP5;1) promoter), a similar increase in Si absorption was noted but the plants did not exhibit symptoms and grew normally. These results demonstrate that TaLsi1 is indeed a functional Si transporter as its expression in Arabidopsis leads to increased Si uptake, but that this expression must be confined to root cells for healthy plant development. The availability of this heterologous expression system will facilitate further studies into the mechanisms and benefits of Si uptake.


Assuntos
Genes de Plantas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Silício/metabolismo , Triticum/genética , Absorção/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Sequência de Bases , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Fenótipo , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , Alinhamento de Sequência , Silício/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Xenopus laevis
3.
Theor Appl Genet ; 120(6): 1163-74, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20039014

RESUMO

A cDNA (msaCIG) encoding a cold-inducible Y(2)K(4) dehydrin in alfalfa (Medicago sativa spp. sativa) was shown to share extensive homology with sequences from other species and subspecies of Medicago. Differences were mainly the result of the occurrence of large indels, amino acids substitutions/deletions and sequence duplications. Using a combination of a bulk segregant analysis and RFLP hybridization, we uncovered an msaCIG polymorphism that increases in frequency in response to recurrent selection for superior freezing tolerance. Progenies from crosses between genotypes with (D+) or without (D-) the polymorphic dehydrin significantly differed in their tolerance to subfreezing temperatures. Based on the msaCIG sequence, we looked for intragenic variations that could be associated to the polymorphism detected on Southern blots. Amplifications with primers targeting the 3' half side of msaCIG revealed fragment size variations between pools of genotypes with (+) or without (-) the polymorphism. Three major groups of amplicons of approximately 370 nt (G1), 330 nt (G2), and 290 nt (G3) were distinguished. The G2 group was more intensively amplified in pools of genotypes with the polymorphic dehydrin and was associated to a superior freezing tolerance phenotype. Sequences analysis revealed that size variation in the 3' half was attributable to the variable occurrence of large indels. Single amino acid substitutions and/or deletions caused major differences in the prediction of the secondary structure of the polypeptides. The identification of dehydrin variants associated to superior freezing tolerance paves the way to the development of functional markers and the fixation of favorable alleles in various genetic backgrounds.


Assuntos
Adaptação Fisiológica/genética , Congelamento , Medicago sativa/genética , Mutação/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Northern Blotting , Southern Blotting , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genótipo , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA