Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Res ; 260: 119665, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048062

RESUMO

The intensifying production and release into the environment as well as the increasing potential in agricultural applications make the relationship between plants and nickel nanoparticles (Ni NPs) a relevant and timely topic. The aim of this review is to give an overview and discuss the latest findings about the relationship of Ni NPs and plants. Ni NPs can be synthesized using phytochemicals derived from plant parts in an environmentally friendly manner. There are several ways for these nanoparticles to enter plant cells and tissues. This can be demonstrated through various imaging and chemical mapping approaches (e.g., transmission electron microscopy, X-ray fluorescence spectroscopy etc.). NiO NPs affect plants at multiple levels, including subcellular, cellular, tissue, organ, and whole-plant levels. However, the effects of Ni NPs on plants' ecological partners (e.g., rhizobiome, pollinators) remain largely unknown despite their ecotoxicological significance. The main cause of the Ni NPs-triggered damages is the reactive oxygen species imbalance as a consequence of the modulation of antioxidants. In non-tolerant plants, the toxicity of NiO NPs can be mitigated by exogenous treatments such as the application of silicon, salicylic acid, or jasmonic acid, which induce defense mechanisms whereas Ni-hypertolerant plant species possess endogenous defense systems, such as cell wall modifications and nitrosative signaling against NiO NP stress. Research highlights the role of Ni NPs in managing fungal diseases, showcasing their antifungal properties against specific pathogens. Due to the essentiality of Ni, the application of Ni NPs as nanofertilizers might be promising and has recently started to come into view.


Assuntos
Nanopartículas Metálicas , Níquel , Níquel/toxicidade , Nanopartículas Metálicas/toxicidade , Plantas/efeitos dos fármacos , Agricultura , Química Verde
2.
Environ Pollut ; 341: 122874, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949159

RESUMO

The industrial application and environmental release of nickel oxide NPs (NiO NPs) is increasing, but the details of their relationship with plants are largely unknown. In this work, the cellular, tissue, organ, and molecular level responses of three ecotypes of Ni hyperaccumulator Odontarrhena lesbiaca grown in the presence of high doses of NiO NP (250 mg/L and 500 mg/L) were studied. All three ecotypes showed a similar accumulation of Ni in the presence of nano Ni, and in the case of NiO NPs, the root-to-shoot Ni translocation was slighter compared to the bulk Ni. In all three ecotypes, the walls of the root cells effectively prevented internalization of NiO NPs, providing cellular defense against Ni overload. Exposure to NiO NP led to an increase in cortex thickness and the deposition of lignin-suberin and pectin in roots, serving as a tissue-level defense mechanism against excessive Ni. Exposure to NiO NP did not modify or cause a reduction in some biomass parameters of the Ampeliko and Loutra ecotypes, while it increased all parameters in Olympos. The free salt form of Ni exerted more negative effects on biomass production than the nanoform, and the observed effects of NiO NPs can be attributed to the release of Ni ions. Nitric oxide and peroxynitrite levels were modified by NiO NPs in an ecotype-dependent manner. The changes in the abundance and activity of S-nitrosoglutathione reductase protein triggered by NiO NPs suggest that the enzyme is regulated by NiO NPs at the post-translational level. The NiO NPs slightly intensified protein tyrosine nitration, and the slight differences between the ecotypes were correlated with their biomass production in the presence of NiO NPs. Overall, the Odontarrhena lesbiaca ecotypes exhibited tolerance to NiO NPs at the cellular, tissue, organ/organism and molecular levels, demonstrating various defense mechanisms and changes in the metabolism of reactive nitrogen species metabolism and nitrosative protein modification.


Assuntos
Brassicaceae , Nanopartículas , Ecótipo , Parede Celular
3.
Discov Nano ; 18(1): 8, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757485

RESUMO

Due to the widespread applications of metal nanoparticles (NPs), green synthesis strategies have recently advanced, e.g., methods that utilize extracts made from different plant wastes. A particularly innovative approach to reducing large amounts of available household/agricultural green wastes is their application in nanoparticle generation. Regarding this, the aim of our work was to examine the possibility of upgrading green nanoparticle syntheses from an innovative economic and environmental point of view, namely by investigating the multiple recyclabilities of green tea (GT), coffee arabica (CA), and Virginia creeper (Parthenocissus quinquefolia) (VC) waste residues for iron nanoparticle (FeNPs) synthesis. The plant extracts obtained by each extraction round were analyzed individually to determine the amount of main components anticipated to be involved in NPs synthesis. The synthesized FeNPs were characterized by X-ray powder diffraction and transmission electron microscopy. The activity of the generated FeNPs in degrading chlorinated volatile organic compounds (VOC) and thus their future applicability for remediation purposes were also assessed. We have found that VC and especially GT residues could be reutilized in multiple extraction rounds; however, only the first extract of CA was suitable for FeNPs' generation. All of the obtained FeNPs could degrade VOC with efficiencies GT1-Fe 91.0%, GT2-Fe 83.2%, GT3-Fe 68.5%; CA1-Fe 76.2%; VC1-Fe 88.2%, VC2-Fe 79.7%, respectively, where the number (as in GT3) marked the extraction round. These results indicate that the adequately selected green waste material can be reutilized in multiple rounds for nanoparticle synthesis, thus offering a clean, sustainable, straightforward alternative to chemical methods.

4.
Pharmaceutics ; 15(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839907

RESUMO

Multidrug resistance (MDR) is a serious hurdle to successful cancer therapy. Here, we examined the efficiency of novel semi-synthetic dihydrotestosterone derivatives, more specifically androstano-arylpyrimidines in inhibiting the efflux activity of ATP-binding cassette (ABC) transporters and sensitizing inherently MDR colon cancer cells to various chemotherapy drugs. Using the Rhodamine123 accumulation assay, we evaluated the efflux activity of cancer cells following treatments with androstano-arylpyrimidines. We found that acetylated compounds were capable of attenuating the membrane efflux of inherently MDR cells; however, deacetylated counterparts were ineffective. To delineate the possible molecular mechanisms underlying these unique activities of androstano-arylpyrimidines, the degree of apoptosis induction was assessed by AnnexinV-based assays, both upon the individual as well as by steroid and chemotherapy agent combination treatments. Five dihydrotestosterone derivatives applied in combination with Doxorubicin or Epirubicin triggered massive apoptosis in MDR cells, and these combinations were more efficient than chemotherapy drugs together with Verapamil. Furthermore, our results revealed that androstano-arylpyrimidines induced significant endoplasmic reticulum stress (ER stress) but did not notably modulate ABC transporter expression. Therefore, ER stress triggered by acetylated androstano-arylpyrimidines is probably involved in the mechanism of efflux pump inhibition and drug sensitization which can be targeted in future drug developments to defeat inherently multidrug-resistant cancer.

5.
Int J Nanomedicine ; 17: 3079-3096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859731

RESUMO

Background: Multidrug resistance is a common reason behind the failure of chemotherapy. Even if the therapy is effective, serious adverse effects might develop due to the low specificity and selectivity of antineoplastic agents. Mesoporous silica nanoparticles (MSNs) are promising materials for tumor-targeting and drug-delivery due to their small size, relatively inert nature, and extremely large specific surfaces that can be functionalized by therapeutic and targeting entities. We aimed to create a fluorescently labeled MSN-based drug-delivery system and investigate their internalization and drug-releasing capability in drug-sensitive MCF-7 and P-glycoprotein-overexpressing multidrug-resistant MCF-7 KCR cancer cells. Methods and Results: To track the uptake and subcellular distribution of MSNs, particles with covalently coupled red fluorescent Rhodamine B (RhoB) were produced (RhoB@MSNs). Both MCF-7 and MCF-7 KCR cells accumulated a significant amount of RhoB@MSNs. The intracellular RhoB@MSN concentrations did not differ between sensitive and multidrug-resistant cells and were kept at the same level even after cessation of RhoB@MSN exposure. Although most RhoB@MSNs resided in the cytoplasm, significantly more RhoB@MSNs co-localized with lysosomes in multidrug-resistant cells compared to sensitive counterparts. To examine the drug-delivery capability of these particles, RhoB@Rho123@MSNs were established, where RhoB-functionalized nanoparticles carried green fluorescent Rhodamine 123 (Rho123) - a P-glycoprotein substrate - as cargo within mesopores. Significantly higher Rho123 fluorescence intensity was detected in RhoB@Rho123@MSN-treated multidrug-resistant cells than in free Rho123-exposed counterparts. The exceptional drug-delivery potential of MSNs was further verified using Mitomycin C (MMC)-loaded RhoB@MSNs (RhoB@MMC@MSNs). Exposures to RhoB@MMC@MSNs significantly decreased the viability not only of drug-sensitive but of multidrug-resistant cells and the elimination of MDR cells was significantly more robust than upon free MMC treatments. Conclusion: The efficient delivery of Rho123 and MMC to multidrug-resistant cells via MSNs, the amplified and presumably prolonged intracellular drug concentration, and the consequently enhanced cytotoxic effects envision the enormous potential of MSNs to defeat multidrug-resistant cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos/uso terapêutico , Doxorrubicina , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Nanopartículas/ultraestrutura , Neoplasias/tratamento farmacológico , Porosidade , Dióxido de Silício/farmacologia
6.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615247

RESUMO

A series of novel estradiol-based salicylaldehyde (thio)semicarbazones ((T)SCs) bearing (O,N,S) and (O,N,O) donor sets and their Cu(II) complexes were developed and characterized in detail by 1H and ¹³C nuclear magnetic resonance spectroscopy, UV-visible and electron paramagnetic resonance spectroscopy, electrospray ionization mass spectrometry and elemental analysis. The structure of the Cu(II)-estradiol-semicarbazone complex was revealed by X-ray crystallography. Proton dissociation constants of the ligands and stability constants of the metal complexes were determined in 30% (v/v) DMSO/H2O. Estradiol-(T)SCs form mono-ligand complexes with Cu(II) ions and exhibit high stability with the exception of estradiol-SC. The Cu(II) complexes of estradiol-TSC and its N,N-dimethyl derivative displayed the highest cytotoxicity among the tested compounds in MCF-7, MCF-7 KCR, DU-145, and A549 cancer cells. The complexes do not damage DNA according to both in vitro cell-free and cellular assays. All the Cu(II)-TSC complexes revealed significant activity against the Gram-positive Staphylococcus aureus bacteria strain. Estradiol-TSCs showed efficient antioxidant activity, which was decreased by complexation with Cu(II) ions. The exchange of estrone moiety to estradiol did not result in significant changes to physico-chemical and biological properties.


Assuntos
Complexos de Coordenação , Semicarbazonas , Tiossemicarbazonas , Semicarbazonas/química , Estrutura Molecular , Antioxidantes/farmacologia , Cobre/química , Estradiol/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antibacterianos/farmacologia , Cristalografia por Raios X , Ligantes , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química
7.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445378

RESUMO

(1) Background: Several properties of silver nanoparticles (AgNPs), such as cytotoxic, anticancer, and antimicrobial activities, have been subjects of intense research; however, important aspects such as nanoparticle aggregation are generally neglected, although a decline in colloidal stability leads to a loss of the desired biological activities. Colloidal stability is affected by pH, ionic strength, or a plethora of biomolecules that interact with AgNPs under biorelevant conditions. (2) Methods: As only a few studies have focused on the relationship between aggregation behavior and the biological properties of AgNPs, here, we have systematically evaluated this issue by completing a thorough analysis of sterically (via polyvinyl-pyrrolidone (PVP)) stabilized AgNPs that were subjected to different circumstances. We assessed ultraviolet-visible light absorption, dynamic light scattering, zeta potential measurements, in vitro cell viability, and microdilution assays to screen both colloidal stability as well as bioactivity. (3) Results: The results revealed that although PVP provided outstanding biorelevant colloidal stability, the chemical stability of AgNPs could not be maintained completely with this capping material. (4) Conclusion: These unexpected findings led to the realization that stabilizing materials have more profound importance in association with biorelevant applications of nanomaterials than just being simple colloidal stabilizers.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Povidona/química , Prata/farmacologia , Anti-Infecciosos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Prata/química
8.
Int J Nanomedicine ; 16: 3021-3040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935497

RESUMO

PURPOSE: Silver nanoparticles (AgNPs) are one of the most commonly investigated nanomaterials, especially due to their biomedical applications. However, their excellent cytotoxic and antimicrobial activity is often compromised in biological media due to nanoparticle aggregation. In this work, the aggregation behavior and the related biological activity of three different samples of citrate capped silver nanoparticles, with mean diameters of 10, 20, and 50 nm, respectively, were examined. METHODS: Following nanoparticle synthesis and characterization with transmission electron microscopy, their aggregation behavior under various pH values, NaCl, glucose, and glutamine concentrations, furthermore in cell culture medium components such as Dulbecco's Modified Eagle's Medium and fetal bovine serum, was assessed through dynamic light scattering and ultraviolet-visible spectroscopy. RESULTS: The results indicated that acidic pH and physiological electrolyte content universally induce micron-scale aggregation, which can be mediated by biomolecular corona formation. Remarkably, larger particles demonstrated higher resistance against external influences than smaller counterparts. In vitro cytotoxicity and antimicrobial assays were performed by treating cells with nanoparticulate aggregates in differing stages of aggregation. CONCLUSION: Our results revealed a profound association between colloidal stability and toxicity of AgNPs, as extreme aggregation led to the complete loss of biological activity. The higher degree of aggregation resistance observed for larger particles had a significant impact on the in vitro toxicity, since such samples retained more of their activity against microbes and mammalian cells. These findings lead to the conclusion that aiming for the smallest possible nanoparticles might not be the best course of action, despite the general standpoint of the relevant literature.


Assuntos
Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ácido Cítrico/química , Meios de Cultura/química , Difusão Dinâmica da Luz , Fungos/efeitos dos fármacos , Glucose/farmacologia , Glutamina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Cloreto de Sódio/química
9.
Chemosphere ; 251: 126419, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32171133

RESUMO

Due to their release into the environment, zinc oxide nanoparticles (ZnO NPs) may come in contact with plants. In elevated concentrations, ZnO NPs induce reactive oxygen species (ROS) production, but the metabolism of reactive nitrogen species (RNS) and the consequent nitro-oxidative signalling has not been examined so far. In this work, Brassica napus and Brassica juncea seedlings were treated with chemically synthetized ZnO NPs (∼8 nm, 0, 25 or 100 mg/L). At low dose (25 mg/L) ZnO NP exerted a positive effect, while at elevated concentration (100 mg/L) it was toxic to both species. Additionally, B. juncea was more tolerant to ZnO NPs than B. napus. The ZnO NPs could enter the root cells due to their small (∼8 nm) size which resulted in the release of Zn2+ and subsequently increased Zn2+ content in the plant organs. ZnO NPs disturbed superoxide radical and hydrogen peroxide homeostasis and modulated ROS metabolic enzymes (NADPH oxidase, superoxide dismutase, ascorbate peroxidase) and non-enzymatic antioxidants (ascorbate and glutathione) inducing similar changes in oxidative signalling in both Brassica species. The homeostasis of RNS (nitric oxide, peroxynitrite and S-nitrosoglutathione) was also altered by ZnO NPs; however, changes in nitrosative signalling proved to be different in the examined species. Moreover, ZnO NPs triggered changes in protein carbonylation and nitration. These results suggest that ZnO NPs induce changes in nitro-oxidative signalling which may contribute to ZnO NP toxicity. Furthermore, difference in ZnO NP tolerance of Brassica species is more likely related to nitrosative than to oxidative signalling.


Assuntos
Brassica/fisiologia , Nanopartículas/toxicidade , Óxido de Zinco/toxicidade , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Brassica napus/metabolismo , Glutationa/metabolismo , Mostardeira/metabolismo , Nanopartículas/química , Oxirredução , Raízes de Plantas/metabolismo , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Zinco/química , Óxido de Zinco/química
10.
J Nanobiotechnology ; 18(1): 18, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964403

RESUMO

BACKGROUND: Although accumulating evidence suggests that the crosstalk between malignant cells and cancer-associated fibroblasts (CAFs) actively contributes to tumour growth and metastatic dissemination, therapeutic strategies targeting tumour stroma are still not common in the clinical practice. Metal-based nanomaterials have been shown to exert excellent cytotoxic and anti-cancerous activities, however, their effects on the reactive stroma have never been investigated in details. Thus, using feasible in vitro and in vivo systems to model tumour microenvironment, we tested whether the presence of gold, silver or gold-core silver-shell nanoparticles exerts anti-tumour and metastasis suppressing activities by influencing the tumour-supporting activity of stromal fibroblasts. RESULTS: We found that the presence of gold-core silver-shell hybrid nanomaterials in the tumour microenvironment attenuated the tumour cell-promoting behaviour of CAFs, and this phenomenon led to a prominent attenuation of metastatic dissemination in vivo as well. Mechanistically, transcriptome analysis on tumour-promoting CAFs revealed that silver-based nanomaterials trigger expressional changes in genes related to cancer invasion and tumour metastasis. CONCLUSIONS: Here we report that metal nanoparticles can influence the cancer-promoting activity of tumour stroma by affecting the gene expressional and secretory profiles of stromal fibroblasts and thereby altering their intrinsic crosstalk with malignant cells. This potential of metal nanomaterials should be exploited in multimodal treatment approaches and translated into improved therapeutic outcomes.


Assuntos
Antineoplásicos/química , Fibroblastos Associados a Câncer/efeitos dos fármacos , Nanopartículas Metálicas/química , Metástase Neoplásica/tratamento farmacológico , Ligas/química , Animais , Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Progressão da Doença , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Ouro/química , Humanos , Nanopartículas Metálicas/uso terapêutico , Camundongos Endogâmicos BALB C , Metástase Neoplásica/patologia , Transplante de Neoplasias , Prata/química , Microambiente Tumoral/efeitos dos fármacos
11.
Int J Nanomedicine ; 14: 667-687, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30705586

RESUMO

PURPOSE: The biomedical applications of silver nanoparticles (AgNPs) are heavily investigated due to their cytotoxic and antimicrobial properties. However, the scientific literature is lacking in data on the aggregation behavior of nanoparticles, especially regarding its impact on biological activity. Therefore, to assess the potential of AgNPs in therapeutic applications, two different AgNP samples were compared under biorelevant conditions. METHODS: Citrate-capped nanosilver was produced by classical chemical reduction and stabilization with sodium citrate (AgNP@C), while green tea extract was used to produce silver nanoparticles in a green synthesis approach (AgNP@GTs). Particle size, morphology, and crystallinity were characterized using transmission electron microscopy. To observe the effects of the most important biorelevant conditions on AgNP colloidal stability, aggregation grade measurements were carried out using UV-Vis spectroscopy and dynamic light scatterig, while MTT assay and a microdilution method were performed to evaluate the effects of aggregation on cytotoxicity and antimicrobial activity in a time-dependent manner. RESULTS: The aggregation behavior of AgNPs is mostly affected by pH and electrolyte concentration, while the presence of biomolecules can improve particle stability due to the biomolecular corona effect. We demonstrated that high aggregation grade in both AgNP samples attenuated their toxic effect toward living cells. However, AgNP@GT proved less prone to aggregation thus retained a degree of its toxicity. CONCLUSION: To our knowledge, this is the first systematic examination regarding AgNP aggregation behavior with simultaneous measurements of its effect on biological activity. We showed that nanoparticle behavior in complex systems can be estimated by simple compounds like sodium chloride and glutamine. Electrostatic stabilization might not be suitable for biomedical AgNP applications, while green synthesis approaches could offer new frontiers to preserve nanoparticle toxicity by enhancing colloidal stability. The importance of properly selected synthesis methods must be emphasized as they profoundly influence colloidal stability, and therefore biological activity.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Prata/química , Linhagem Celular Tumoral , Ácido Cítrico/química , Humanos , Tamanho da Partícula , Eletricidade Estática , Relação Estrutura-Atividade
12.
J Nanobiotechnology ; 17(1): 9, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670028

RESUMO

BACKGROUND: Development of multidrug resistance (MDR) is a major burden of successful chemotherapy, therefore, novel approaches to defeat MDR are imperative. Although the remarkable anti-cancer propensity of silver nanoparticles (AgNP) has been demonstrated and their potential application in MDR cancer has been proposed, the nanoparticle size-dependent cellular events directing P-glycoprotein (Pgp) expression and activity in MDR cancer have never been addressed. Hence, in the present study we examined AgNP size-dependent cellular features in multidrug resistant breast cancer cells. RESULTS: In this study we report that 75 nm AgNPs inhibited significantly Pgp efflux activity in drug-resistant breast cancer cells and potentiated the apoptotic effect of doxorubicin, which features were not observed upon 5 nm AgNP treatment. Although both sized AgNPs induced significant ROS production and mitochondrial damage, 5 nm AgNPs were more potent than 75 nm AgNPs in this respect, therefore, these effects can not to be accounted for the reduced transport activity of ATP-driven pumps observed after 75 nm AgNP treatments. Instead we found that 75 nm AgNPs depleted endoplasmic reticulum (ER) calcium stores, caused notable ER stress and decreased plasma membrane positioning of Pgp. CONCLUSION: Our study suggests that AgNPs are potent inhibitors of Pgp function and are promising agents for sensitizing multidrug resistant breast cancers to anticancer drugs. This potency is determined by their size, since 75 nm AgNPs are more efficient than smaller counterparts. This is a highly relevant finding as it renders AgNPs attractive candidates in rational design of therapeutically useful agents for tumor targeting. In the present study we provide evidence that exploitation of ER stress can be a propitious target in defeating multidrug resistance in cancers.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nanopartículas Metálicas , Prata , Antineoplásicos/uso terapêutico , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Tamanho da Partícula , Prata/farmacologia
13.
Int J Nanomedicine ; 12: 871-883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184158

RESUMO

Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Café/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Prata/química , Chá , Animais , Anti-Infecciosos/química , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fungos/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Células NIH 3T3
14.
J Basic Microbiol ; 56(5): 557-65, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26972521

RESUMO

One-dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X-ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Nanopartículas Metálicas , Nanotubos/toxicidade , Titânio/farmacologia , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células HeLa , Humanos , Troca Iônica , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Espectrometria por Raios X , Titânio/toxicidade
15.
Water Res ; 95: 165-73, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26994337

RESUMO

Nanoscale zero-valent iron (NZVI) is increasingly used for reducing chlorinated organic contaminants in soil or groundwater. However, little is known about what impact the particles will have on the biochemical processes and the indigenous microbial communities. Nanoiron reactivity is affected by the structure and morphology of nanoparticles that complicates the applicability in bioremediation. In this study, the effect of precursors (ferrous sulfate and ferric chloride) and reducing agents (sodium dithionite and sodium borohydride) on the morphology and the reactivity of NZVIs was investigated. We also studied the impact of differently synthesized NZVIs on microbial community, which take part in reductive dechlorination. We demonstrated that both the applied iron precursor and the reducing agent had influence on the structure of the nanoparticles. Spherical nanoparticles with higher Fe(0) content (>90%) was observed by using sodium borohydride as reducing agent, while application of sodium dithionite as reducing agent resulted nanostructures with lower Fe(0) content (between 68,7 and 85,5%). To determine the influence of differently synthesized NZVIs on cell viability anaerobic enriched microcosm were used. NVZI was used in 0.1 g/L concentration in all batch experiments. Relative amount of Dehalococcoides, sulfate reducers (SRBs) and methanogens were measured by quantitative PCR. We found that the relative amount of Dehalococcoides slowly decreased in all experiments independently from the precursor and reducing agent, whereas the total amount of microbes increased. The only clear distinction was in relative amount of sulfate reducers which were higher in the presence of NZVIs synthesized from sodium dithionite.


Assuntos
Halogenação , Ferro/química , Bactérias , Biodegradação Ambiental , Água Subterrânea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA