Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 99: 104914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113759

RESUMO

BACKGROUND: Cerebral Cavernous Malformation (CCM) is a rare cerebrovascular disease, characterized by the presence of multiple vascular malformations that may result in intracerebral hemorrhages (ICHs), seizure(s), or focal neurological deficits (FND). Familial CCM (fCCM) is due to loss of function mutations in one of the three independent genes KRIT1 (CCM1), Malcavernin (CCM2), or Programmed Cell death 10 (PDCD10/CCM3). The aim of this study was to identify plasma protein biomarkers of fCCM to assess the severity of the disease and predict its progression. METHODS: Here, we have investigated plasma samples derived from n = 71 symptomatic fCCM patients (40 female/31 male) and n = 17 healthy donors (HD) (9 female/8 male) of the Phase 1/2 Treat_CCM trial, using multiplexed protein profiling approaches. FINDINGS: Biomarkers as sCD14 (p = 0.00409), LBP (p = 0.02911), CXCL4 (p = 0.038), ICAM-1 (p = 0.02013), ANG2 (p = 0.026), CCL5 (p = 0.00403), THBS1 (p = 0.0043), CRP (p = 0.0092), and HDL (p = 0.027), were significantly different in fCCM compared to HDs. Of note, sENG (p = 0.011), THBS1 (p = 0.011) and CXCL4 (p = 0.011), were correlated to CCM genotype. sROBO4 (p = 0.014), TM (p = 0.026) and CRP (p = 0.040) were able to predict incident adverse clinical events, such as ICH, FND or seizure. GDF-15, FLT3L, CXCL9, FGF-21 and CDCP1, were identified as predictors of the formation of new MRI-detectable lesions over 2-year follow-up. Furthermore, the functional relevance of ang2, thbs1, robo4 and cdcp1 markers was validated by zebrafish pre-clinical model of fCCM. INTERPRETATION: Overall, our study identifies a set of biochemical parameters to predict CCM progression, suggesting biological interpretations and potential therapeutic approaches to CCM disease. FUNDING: Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro (AIRC), ERC, Leducq Transatlantic Network of Excellence, Swedish Research Council.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Animais , Humanos , Masculino , Feminino , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Associadas aos Microtúbulos/genética , Peixe-Zebra/metabolismo , Biomarcadores , Convulsões , Antígenos de Neoplasias , Moléculas de Adesão Celular
2.
Sci Rep ; 13(1): 5572, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019926

RESUMO

The capillary-venous pathology cerebral cavernous malformation (CCM) is caused by loss of CCM1/Krev interaction trapped protein 1 (KRIT1), CCM2/MGC4607, or CCM3/PDCD10 in some endothelial cells. Mutations of CCM genes within the brain vasculature can lead to recurrent cerebral hemorrhages. Pharmacological treatment options are urgently needed when lesions are located in deeply-seated and in-operable regions of the central nervous system. Previous pharmacological suppression screens in disease models of CCM led to the discovery that treatment with retinoic acid improved CCM phenotypes. This finding raised a need to investigate the involvement of retinoic acid in CCM and test whether it has a curative effect in preclinical mouse models. Here, we show that components of the retinoic acid synthesis and degradation pathway are transcriptionally misregulated across disease models of CCM. We complemented this analysis by pharmacologically modifying retinoic acid levels in zebrafish and human endothelial cell models of CCM, and in acute and chronic mouse models of CCM. Our pharmacological intervention studies in CCM2-depleted human umbilical vein endothelial cells (HUVECs) and krit1 mutant zebrafish showed positive effects when retinoic acid levels were increased. However, therapeutic approaches to prevent the development of vascular lesions in adult chronic murine models of CCM were drug regiment-sensitive, possibly due to adverse developmental effects of this hormone. A treatment with high doses of retinoic acid even worsened CCM lesions in an adult chronic murine model of CCM. This study provides evidence that retinoic acid signaling is impaired in the CCM pathophysiology and suggests that modification of retinoic acid levels can alleviate CCM phenotypes.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Adulto , Humanos , Animais , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Peixe-Zebra/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Encéfalo/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
3.
Sci Transl Med ; 11(520)2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776290

RESUMO

Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in KRIT1, CCM2, or PDCD10 Disease onset is earlier and more severe in individuals with PDCD10 mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase kinase 3 (MEKK3) signaling downstream of Toll-like receptor 4 (TLR4) stimulation by lipopolysaccharide derived from the gut microbiome. These findings suggest a gut-brain CCM disease axis but fail to define it or explain the poor prognosis of patients with PDCD10 mutations. Here, we demonstrate that the gut barrier is a primary determinant of CCM disease course, independent of microbiome configuration, that explains the increased severity of CCM disease associated with PDCD10 deficiency. Chemical disruption of the gut barrier with dextran sulfate sodium augments CCM formation in a mouse model, as does genetic loss of Pdcd10, but not Krit1, in gut epithelial cells. Loss of gut epithelial Pdcd10 results in disruption of the colonic mucosal barrier. Accordingly, loss of Mucin-2 or exposure to dietary emulsifiers that reduce the mucus barrier increases CCM burden analogous to loss of Pdcd10 in the gut epithelium. Last, we show that treatment with dexamethasone potently inhibits CCM formation in mice because of the combined effect of action at both brain endothelial cells and gut epithelial cells. These studies define a gut-brain disease axis in an experimental model of CCM in which a single gene is required for two critical components: gut epithelial function and brain endothelial signaling.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/metabolismo , Trato Gastrointestinal/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Encéfalo/patologia , Proteínas de Transporte/metabolismo , Colite/complicações , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Sulfato de Dextrana , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/tratamento farmacológico , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Proteína KRIT1/metabolismo , Ligantes , Camundongos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA