Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Mol Cancer Res ; 22(1): 94-103, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37756563

RESUMO

Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS: Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.


Assuntos
Leucemia Mieloide Aguda , Monoéster Fosfórico Hidrolases , Animais , Camundongos , Leucemia Mieloide Aguda/genética , Mutação , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/genética
2.
Cancers (Basel) ; 15(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38001685

RESUMO

The type III receptor tyrosine kinase FLT3 is a pivotal kinase for hematopoietic progenitor cell regulation, with significant implications in acute myeloid leukemia (AML) through mutations like internal tandem duplication (ITD). This study delves into the structural intricacies of FLT3, the roles of activation loop mutants, and their interaction with tyrosine kinase inhibitors. Coupled with this, the research leverages molecular contrastive learning and protein language modeling to examine interactions between small molecule inhibitors and FLT3 activation loop mutants. Utilizing the ConPLex platform, over 5.7 million unique FLT3 activation loop mutants-small molecule pairs were analyzed. The binding free energies of three inhibitors were assessed, and cellular apoptotic responses were evaluated under drug treatments. Notably, the introduction of the Xepto50 scoring system provides a nuanced metric for drug efficacy. The findings underscore the modulation of molecular interactions and cellular responses by Y842 mutations in FLT3-KD, highlighting the need for tailored therapeutic approaches in FLT3-ITD-related malignancies.

3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835239

RESUMO

Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Sorafenibe , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Tirosina Quinase 3 Semelhante a fms/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Sorafenibe/uso terapêutico
4.
Cell Rep ; 40(6): 111177, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947955

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease with variable patient responses to therapy. Selinexor, an inhibitor of nuclear export, has shown promising clinical activity for AML. To identify the molecular context for monotherapy sensitivity as well as rational drug combinations, we profile selinexor signaling responses using phosphoproteomics in primary AML patient samples and cell lines. Functional phosphosite scoring reveals that p53 function is required for selinexor sensitivity consistent with enhanced efficacy of selinexor in combination with the MDM2 inhibitor nutlin-3a. Moreover, combining selinexor with the AKT inhibitor MK-2206 overcomes dysregulated AKT-FOXO3 signaling in resistant cells, resulting in synergistic anti-proliferative effects. Using high-throughput spatial proteomics to profile subcellular compartments, we measure global proteome and phospho-proteome dynamics, providing direct evidence of nuclear translocation of FOXO3 upon combination treatment. Our data demonstrate the potential of phosphoproteomics and functional phosphorylation site scoring to successfully pinpoint key targetable signaling hubs for rational drug combinations.


Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Apoptose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Hidrazinas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triazóis , Proteína Supressora de Tumor p53/metabolismo
5.
Mol Oncol ; 13(12): 2646-2662, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545548

RESUMO

Colorectal cancer (CRC) is the third most prevalent cancer worldwide causing an estimated 700 000 deaths annually. Different types of treatment are available for patients with advanced metastatic colorectal cancer, including targeted biological agents, such as cetuximab, a monoclonal antibody that targets EGFR. We have previously reported a study indicating multiple levels of interaction between metallopeptidase inhibitor 1 (TIMP-1) and the epidermal growth factor (EGF) signaling axis, which could explain how TIMP-1 levels can affect the antitumor effects of EGFR inhibitors. We also reported an association between TIMP-1-mediated cell invasive behavior and KRAS status. To gain insight into the molecular mechanisms underlying the effects of TIMP-1 in CRC, we examined by transcriptomics, proteomics, and kinase activity profiling a matched pair of isogenic human CRC isogenic DLD-1 CRC cell clones, bearing either an hemizygous KRAS wild-type allele or KRAS G13D mutant allele, exposed, or not, to TIMP-1. Omics analysis of the two cell lines identified the receptor tyrosine kinase c-Kit, a proto-oncogene that can modulate cell proliferation and invasion in CRC, as a target for TIMP-1. We found that exposure of DLD-1 CRC cells to exogenously added TIMP-1 promoted phosphorylation of c-Kit, indicative of a stimulatory effect of TIMP-1 on the c-Kit signaling axis. In addition, TIMP-1 inhibited c-Kit shedding in CRC cells grown in the presence of exogenous TIMP-1. Given the regulatory roles that c-Kit plays in cell proliferation and migration, and the realization that c-Kit is an important oncogene in CRC, it is likely that some of the biological effects of TIMP-1 overexpression in CRC may be exerted through its effect on c-Kit signaling.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Humanos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética
6.
Blood Cancer J ; 9(8): 54, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346159

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Physiol Rev ; 99(3): 1433-1466, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31066629

RESUMO

FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.


Assuntos
Tirosina Quinase 3 Semelhante a fms/fisiologia , Animais , Antineoplásicos/farmacologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética
9.
Int J Biochem Cell Biol ; 107: 32-37, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30552988

RESUMO

The receptor tyrosine kinase FLT3 is expressed almost exclusively in the hematopoietic compartment. Binding of its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. This leads to autophosphorylation of FLT3 on several tyrosine residues which constitute high affinity binding sites for signal transduction molecules. Recruitment of these signal transduction molecules to FLT3 leads to the activation of several signal transduction pathways that regulate cell survival, cell proliferation and differentiation. Oncogenic, constitutively active mutants of FLT3 are known to be expressed in acute myeloid leukemia and to correlate with poor prognosis. Activation of the receptor mediates cell survival, cell proliferation and differentiation of cells. Several of the signal transduction pathways downstream of FLT3 have been shown to include various members of the SRC family of kinases (SFKs). They are involved in regulating the activity of RAS/ERK pathways through the scaffolding protein GAB2 and the adaptor protein SHC. They are also involved in negative regulation of signaling through phosphorylation of the ubiquitin E3 ligase CBL. Initially studied as the SFKs, as if they were a homogenous group of kinases, recent data suggest that each SFK has its own specific signaling capabilities where some are involved in positive signaling, while others are involved in negative signaling. This review discusses some recent insights into how SFKs are involved in FLT3 signaling.


Assuntos
Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/metabolismo , Quinases da Família src/metabolismo , Animais , Humanos
10.
Oncogene ; 37(47): 6180-6194, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30013190

RESUMO

Aberrant activation of anaplastic lymphoma kinase (ALK) can cause sporadic and familial neuroblastoma. Using a proteomics approach, we identified Bruton's tyrosine kinase (BTK) as a novel ALK interaction partner, and the physical interaction was confirmed by co-immunoprecipitation. BTK is expressed in neuroblastoma cell lines and tumor tissues. Its high expression correlates with poor relapse-free survival probability of neuroblastoma patients. Mechanistically, we demonstrated that BTK potentiates ALK-mediated signaling in neuroblastoma, and increases ALK stability by reducing ALK ubiquitination. Both ALKWT and ALKF1174L can induce BTK phosphorylation and higher capacity of ALKF1174L is observed. Furthermore, the BTK inhibitor ibrutinib can effectively inhibit the growth of neuroblastoma xenograft in nude mice, and the combination of ibrutinib and the ALK inhibitor crizotinib further enhances the inhibition. Our study provides strong rationale for clinical trial of ALK-positive neuroblastoma using ibrutinib or the combination of ibrutinib and ALK inhibitors.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Quinase do Linfoma Anaplásico/metabolismo , Neuroblastoma/metabolismo , Transdução de Sinais/fisiologia , Adenina/análogos & derivados , Animais , Antineoplásicos/farmacologia , Crizotinibe/farmacologia , Humanos , Camundongos , Camundongos Nus , Piperidinas , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncogenesis ; 7(6): 48, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29910466

RESUMO

In order to investigate the molecular mechanisms by which the oncogenic mutant KIT/D816V causes transformation of cells, we investigated proteins that selectively bind KIT/D816V, but not wild-type KIT, as potential mediators of transformation. By mass spectrometry several proteins were identified, among them a previously uncharacterized protein denoted XKR5 (XK-related protein 5), which is related to the X Kell blood group proteins. We could demonstrate that interaction between XKR5 and KIT/D816V leads to phosphorylation of XKR5 at Tyr 369, Tyr487, and Tyr 543. Tyrosine phosphorylated XKR5 acts as a negative regulator of KIT signaling, which leads to downregulation of phosphorylation of ERK, AKT, and p38. This led to reduced proliferation and colony forming capacity in semi-solid medium. Taken together, our data demonstrate that XKR5 is a novel type of negative regulator of KIT-mediated transformation.

12.
Nat Commun ; 9(1): 1770, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720585

RESUMO

Activating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remains unclear. Using a retroviral acute myeloid mouse leukemia model, we demonstrate that FLT3 ITD , FLT3 N676K , and NRAS G12D accelerate KMT2A-MLLT3 leukemia onset. Further, also subclonal FLT3 N676K mutations accelerate disease, possibly by providing stimulatory factors. Herein, we show that one such factor, MIF, promotes survival of mouse KMT2A-MLLT3 leukemia initiating cells. We identify acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 in KMT2A-MLLT3 leukemia cells that favored clonal expansion. During clonal evolution, we observe serial genetic changes at the Kras G12D locus, consistent with a strong selective advantage of additional Kras G12D . KMT2A-MLLT3 leukemias with signaling mutations enforce Myc and Myb transcriptional modules. Our results provide new insight into the biology of KMT2A-R leukemia with subclonal signaling mutations and highlight the importance of activated signaling as a contributing driver.


Assuntos
Evolução Clonal , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide/genética , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Doença Aguda , Animais , Linhagem Celular Tumoral , Células Cultivadas , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
13.
Sci Rep ; 8(1): 6405, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686302

RESUMO

KIT is a receptor tyrosine kinase (RTK) involved in several cellular processes such as regulation of proliferation, survival and differentiation of early hematopoietic cells, germ cells and melanocytes. Activation of KIT results in phosphorylation of tyrosine residues in the receptor, and recruitment of proteins that mediate downstream signaling and also modulate receptor signaling. Here we show that the SRC-like adaptor protein 2 (SLAP2) binds to wild-type KIT in a ligand-dependent manner and is furthermore found constitutively associated with the oncogenic mutant KIT-D816V. Peptide fishing analysis mapped pY568 and pY570 as potential SLAP2 association sites in KIT, which overlaps with the SRC binding sites in KIT. Expression of SLAP2 in cells expressing the transforming mutant KIT-D816V led to reduced cell viability and reduced colony formation. SLAP2 also partially blocked phosphorylation of several signal transduction molecules downstream of KIT such as AKT, ERK, p38 and STAT3. Finally, SLAP2 expression enhanced ubiquitination of KIT and its subsequent degradation. Taken together, our data demonstrate that SLAP2 negatively modulates KIT-D816V-mediated transformation by enhancing degradation of the receptor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Transformação Celular Neoplásica , Proteínas Proto-Oncogênicas c-kit/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células COS , Sobrevivência Celular , Chlorocebus aethiops , Ligantes , Mutação , Fosforilação , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Domínios de Homologia de src
14.
Ann Hematol ; 97(5): 773-780, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29372308

RESUMO

Acute myeloid leukemia (AML) remains the most common form of acute leukemia among adults and accounts for a large number of leukemia-related deaths. Mutations in FMS-like tyrosine kinase 3 (FLT3) is one of the most prevalent findings in this heterogeneous disease. The major types of mutations in FLT3 can be categorized as internal tandem duplications (ITD) and point mutations. Recent studies suggest that ITDs not only occur in the juxtamembrane region as originally described, but also in the kinase domain. Although the juxtamembrane ITDs have been well characterized, the tyrosine kinase domain ITDs have not yet been thoroughly studied due to their recent discovery. For this reason, we compared ITD mutations in the juxtamembrane domain with those in the tyrosine kinase domain, as well as with the most common activating point mutation in the tyrosine kinase domain, D835Y. The purpose of this study was to understand whether it is the nature of the mutation or the location of the mutation that plays the main role in leukemogenesis. The various FLT3 mutants were expressed in the murine pro-B cell line Ba/F3 and examined for their capacity to form colonies in semisolid medium. The size and number of colonies formed by Ba/F3 cells expressing either the internal tandem duplication within juxtamembrane domain of the receptor (JMD-ITD) or the tyrosine kinase domain (TKD)-ITD were indistinguishable, while Ba/F3 cells expressing D835Y/FLT3 failed to form colonies. Cell proliferation and cell survival was also significantly higher in TKD-ITD expressing cells, compared to cells expressing D835Y/FLT3. Furthermore, TKD-ITD is capable of inducing phosphorylation of STAT5, while D835Y/FLT3 fails to induce tyrosine phosphorylation of STAT5. Other signal transduction pathways such as the RAS/ERK and the PI3K/AKT pathways were activated to the same level in TKD-ITD cells as compared to D835Y/FLT3 expressing cells. Taken together, our data suggest that TKD-ITD displays similar oncogenic potential to the JMD-ITD but a higher oncogenic potential than the D835Y point mutation.


Assuntos
Carcinogênese/genética , Mutação com Ganho de Função/genética , Proteínas Tirosina Quinases/genética , Sequências de Repetição em Tandem/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Mutação/genética , Proteínas Tirosina Quinases/biossíntese , Tirosina Quinase 3 Semelhante a fms/biossíntese
15.
Sci Rep ; 7(1): 13734, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062038

RESUMO

The non-receptor tyrosine kinase LCK belongs to the SRC family of kinases. SRC family kinases are proto-oncogenes that have long been known to play key roles in cell proliferation, motility, morphology and survival. Here we show that LCK regulates the function of the type III receptor tyrosine kinase FLT3 in murine pro-B cells. We observed that expression of LCK significantly enhances the colony forming capacity of the constitutively active FLT3 mutant FLT3-ITD (internal tandem duplication). Furthermore, cells expressing LCK developed tumor earlier compared to cells transfected with empty control vector. Staining of the tissues from mouse xenografts showed higher Ki67 staining in cells expressing LCK suggesting that expression of LCK enhances the FLT3-ITD-mediated proliferative capacity. LCK expression did not affect either FLT3-WT or FLT3-ITD -induced AKT, ERK1/2 or p38 phosphorylation. However, LCK expression significantly enhanced FLT3-ITD-mediated STAT5 phosphorylation. Taken together, our data suggest that LCK cooperates with oncogenic FLT3-ITD in cellular transformation.


Assuntos
Transformação Celular Neoplásica , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Sequências de Repetição em Tandem/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Camundongos , Fosforilação , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
16.
Mol Cancer Res ; 15(9): 1265-1274, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28584020

RESUMO

The oncogenic D816V mutation of the KIT receptor is well characterized in systemic mastocytosis and acute myeloid leukemia. Although KITD816V has been found in melanoma, its function and involvement in this malignancy is not understood. Here we show that KITD816V induces tyrosine phosphorylation of MITF through a triple protein complex formation between KIT, MITF, and SRC family kinases. In turn, phosphorylated MITF activates target genes that are involved in melanoma proliferation, cell-cycle progression, suppression of senescence, survival, and invasion. By blocking the triple protein complex formation, thus preventing MITF phosphorylation, the cells became hypersensitive to SRC inhibitors. We have therefore delineated a mechanism behind the oncogenic effects of KITD816V in melanoma and provided a rationale for the heightened SRC inhibitor sensitivity in KITD816V transformed cells.Implications: This study demonstrates that an oncogenic tyrosine kinase mutant, KITD816V, can alter the transcriptional program of the transcription factor MITF in melanoma Mol Cancer Res; 15(9); 1265-74. ©2017 AACR.


Assuntos
Melanoma/genética , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Drosophila , Células HEK293 , Humanos , Melanoma/patologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fosforilação , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais , Neoplasias Cutâneas/patologia , Transfecção , Peixe-Zebra
17.
Cell Mol Life Sci ; 74(14): 2679-2688, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28271164

RESUMO

The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Duplicação Gênica , Mutação/genética , Oncogenes , Tirosina/metabolismo , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Proteínas Mutantes/metabolismo , Células Mieloides/metabolismo , Fosforilação , Estabilidade Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteólise , Transdução de Sinais , Ubiquitinação
18.
Oncotarget ; 8(7): 12194-12202, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28086240

RESUMO

The type III receptor tyrosine kinase FLT3 is one of the most commonly mutated oncogenes in acute myeloid leukemia (AML). Inhibition of mutated FLT3 in combination with chemotherapy has displayed promising results in clinical trials. However, one of the major obstacles in targeting FLT3 is the development of resistant disease due to secondary mutations in FLT3 that lead to relapse. FLT3 and its oncogenic mutants signal through associating proteins that activate downstream signaling. Thus, targeting proteins that interact with FLT3 and their downstream signaling cascades can be an alternative approach to treat FLT3-dependent AML. We used an SH2 domain array screen to identify novel FLT3 interacting proteins and identified ABL2 as a potent interacting partner of FLT3. To understand the role of ABL2 in FLT3-mediated biological and cellular events, we used the murine pro-B cell line Ba/F3 as a model system. Overexpression of ABL2 in Ba/F3 cells expressing an oncogenic mutant of FLT3 (FLT3-ITD) resulted in partial inhibition of FLT3-ITD-dependent cell proliferation and colony formation. ABL2 expression did not alter the kinase activity of FLT3, its ubiquitination or its stability. However, it partially blocked FLT3-induced AKT phosphorylation without affecting ERK1/2 and p38 activation. Taken together our data suggest that ABL2 acts as negative regulator of signaling downstream of FLT3.


Assuntos
Proliferação de Células , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Western Blotting , Células COS , Linhagem Celular , Camundongos , Mutação , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases/genética , Sequências de Repetição em Tandem/genética , Tirosina Quinase 3 Semelhante a fms/genética
19.
Oncotarget ; 7(36): 57770-57782, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27458164

RESUMO

Fms-like tyrosine kinase (FLT3) is a frequently mutated oncogene in acute myeloid leukemia (AML). FLT3 inhibitors display promising results in a clinical setting, but patients relapse after short-term treatment due to the development of resistant disease. Therefore, a better understanding of FLT3 downstream signal transduction pathways will help to identify an alternative target for the treatment of AML patients carrying oncogenic FLT3. Activation of FLT3 results in phosphorylation of FLT3 on several tyrosine residues that recruit SH2 domain-containing signaling proteins. We screened a panel of SH2 domain-containing proteins and identified SLAP2 as a potent interacting partner of FLT3. We demonstrated that interaction occurs when FLT3 is activated, and also, an intact SH2 domain of SLAP2 is required for binding. SLAP2 binding sites in FLT3 mainly overlap with those of SRC. SLAP2 over expression in murine proB cells or myeloid cells inhibited oncogenic FLT3-ITD-mediated cell proliferation and colony formation in vitro, and tumor formation in vivo. Microarray analysis suggests that higher SLAP2 expression correlates with a gene signature similar to that of loss of oncogene function. Furthermore, FLT3-ITD positive AML patients with higher SLAP2 expression displayed better prognosis compared to those with lower expression of SLAP2. Expression of SLAP2 blocked FLT3 downstream signaling cascades including AKT, ERK, p38 and STAT5. Finally, SLAP2 accelerated FLT3 degradation through enhanced ubiquitination. Collectively, our data suggest that SLAP2 acts as a negative regulator of FLT3 signaling and therefore, modulation of SLAP2 expression levels may provide an alternative therapeutic approach for FLT3-ITD positive AML.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Sítios de Ligação , Células COS , Proliferação de Células , Chlorocebus aethiops , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Tirosina/química , Ubiquitinação , Domínios de Homologia de src
20.
Oncotarget ; 7(9): 9964-74, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26848862

RESUMO

FYN is a non-receptor tyrosine kinase belonging to the SRC family of kinases, which are frequently over-expressed in human cancers, and play key roles in cancer biology. SRC has long been recognized as an important oncogene, but little attention has been given to its other family members. In this report, we have studied the role of FYN in FLT3 signaling in respect to acute myeloid leukemia (AML). We observed that FYN displays a strong association with wild-type FLT3 as well as oncogenic FLT3-ITD and is dependent on the kinase activity of FLT3 and the SH2 domain of FYN. We identified multiple FYN binding sites in FLT3, which partially overlapped with SRC binding sites. To understand the role of FYN in FLT3 signaling, we generated FYN overexpressing cells. We observed that expression of FYN resulted in slightly enhanced phosphorylation of AKT, ERK1/2 and p38 in response to ligand stimulation. Furthermore, FYN expression led to a slight increase in FLT3-ITD-dependent cell proliferation, but potent enhancement of STAT5 phosphorylation as well as colony formation. We also observed that FYN expression is deregulated in AML patient samples and that higher expression of FYN, in combination with FLT3-ITD mutation, resulted in enrichment of the STAT5 signaling pathway and correlated with poor prognosis in AML. Taken together our data suggest that FYN cooperates with oncogenic FLT3-ITD in cellular transformation by selective activation of the STAT5 pathway. Therefore, inhibition of FYN, in combination with FLT3 inhibition, will most likely be beneficial for this group of AML patients.


Assuntos
Leucemia Mieloide/genética , Mutação , Proteínas Proto-Oncogênicas c-fyn/genética , Fator de Transcrição STAT5/genética , Transdução de Sinais/genética , Tirosina Quinase 3 Semelhante a fms/genética , Doença Aguda , Animais , Western Blotting , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Duplicação Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Camundongos , Fosforilação , Prognóstico , Ligação Proteica , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/metabolismo , Análise de Sobrevida , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA