Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573326

RESUMO

MOTIVATION: There is a rapidly growing interest in high-throughput drug combination screening to identify synergizing drug interactions for treatment of various maladies, such as cancer and infectious disease. This creates the need for pipelines that can be used to design such screens, perform quality control on the data and generate data files that can be analyzed by synergy-finding bioinformatics applications. RESULTS: screenwerk is an open-source, end-to-end modular tool available as an R-package for the design and analysis of drug combination screens. The tool allows for a customized build of pipelines through its modularity and provides a flexible approach to quality control and data analysis. screenwerk is adaptable to various experimental requirements with an emphasis on precision medicine. It can be coupled to other R packages, such as bayesynergy, to identify synergistic and antagonistic drug interactions in cell lines or patient samples. screenwerk is scalable and provides a complete solution for setting up drug sensitivity screens, read raw measurements and consolidate different datasets, perform various types of quality control and analyze, report and visualize the results of drug sensitivity screens. AVAILABILITY AND IMPLEMENTATION: The R-package and technical documentation is available at https://github.com/Enserink-lab/screenwerk; the R source code is publicly available at https://github.com/Enserink-lab/screenwerk under GNU General Public License v3.0; bayesynergy is accessible at https://github.com/ocbe-uio/bayesynergy. Selected modules are available through Galaxy, an open-source platform for FAIR data analysis at https://oncotools.elixir.no. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Documentação , Software , Combinação de Medicamentos , Análise de Dados , Ensaios de Triagem em Larga Escala
2.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34308471

RESUMO

The effect of cancer therapies is often tested pre-clinically via in vitro experiments, where the post-treatment viability of the cancer cell population is measured through assays estimating the number of viable cells. In this way, large libraries of compounds can be tested, comparing the efficacy of each treatment. Drug interaction studies focus on the quantification of the additional effect encountered when two drugs are combined, as opposed to using the treatments separately. In the bayesynergy R package, we implement a probabilistic approach for the description of the drug combination experiment, where the observed dose response curve is modelled as a sum of the expected response under a zero-interaction model and an additional interaction effect (synergistic or antagonistic). Although the model formulation makes use of the Bliss independence assumption, we note that the posterior estimates of the dose-response surface can also be used to extract synergy scores based on other reference models, which we illustrate for the Highest Single Agent model. The interaction is modelled in a flexible manner, using a Gaussian process formulation. Since the proposed approach is based on a statistical model, it allows the natural inclusion of replicates, handles missing data and uneven concentration grids, and provides uncertainty quantification around the results. The model is implemented in the open-source Stan programming language providing a computationally efficient sampler, a fast approximation of the posterior through variational inference, and features parallel processing for working with large drug combination screens.


Assuntos
Teorema de Bayes , Biologia Computacional/métodos , Interações Medicamentosas , Sinergismo Farmacológico , Software , Algoritmos , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Humanos , Técnicas In Vitro , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA