Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(5): 1064-1081.e10, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36948193

RESUMO

The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.


Assuntos
Filariose , Filarioidea , Infecções por Nematoides , Camundongos , Animais , Filarioidea/fisiologia , Células Th2 , Monócitos , Cavidade Pleural , Camundongos Endogâmicos C57BL , Macrófagos/fisiologia , Diferenciação Celular , Camundongos Endogâmicos BALB C
2.
Front Immunol ; 13: 1000491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275765

RESUMO

Peritoneal adhesions commonly occur after abdominal or pelvic surgery. These scars join internal organs to each other or to the cavity wall and can present with abdominal or pelvic pain, and bowel obstruction or female infertility. The mechanisms underlying adhesion formation remain unclear and thus, effective treatments are not forthcoming. Peritoneal macrophages accumulate after surgery and previous studies have attributed either pro- or anti-scarring properties to these cells. We propose that there are complex and nuanced responses after surgery with respect to both resident and also monocyte-derived peritoneal macrophage subpopulations. Moreover, we contend that differences in responses of specific macrophage subpopulations in part explain the risk of developing peritoneal scars. We characterized alterations in peritoneal macrophage subpopulations after surgery-induced injury using two strains of mice, BALB/c and C57BL/6, with known differences in macrophage response post-infection. At 14 days post-surgery, BALB/c mice displayed more adhesions compared with C57BL/6 mice. This increase in scarring correlated with a lower influx of monocyte-derived macrophages at day 3 post-surgery. Moreover, BALB/c mice showed distinct macrophage repopulation dynamics after surgery. To confirm a role for monocyte-derived macrophages, we used Ccr2-deficient mice as well as antibody-mediated depletion of CCR2 expressing cells during initial stages of adhesion formation. Both Ccr2-deficient and CCR2-depleted mice showed a significant increase in adhesion formation associated with the loss of peritoneal monocyte influx. These findings revealed an important protective role for monocyte-derived cells in reducing adhesion formation after surgery.


Assuntos
Macrófagos Peritoneais , Monócitos , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Monócitos/patologia , Cicatriz/patologia , Macrófagos/patologia , Aderências Teciduais , Receptores de Quimiocinas , Camundongos Endogâmicos BALB C
3.
Cells ; 11(18)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139450

RESUMO

During experimental tuberculosis (TB), interleukin (IL)-17A appears to be involved in the formation of lung granulomas, possibly through the attraction of neutrophils to the sites of infection. However, the protective impact of cytokine appears to depend on the degree of its induction. Hence, robust production of IL-17A in mice infected with the hypervirulent isolate Mycobacterium tuberculosis (Mtb) HN878 mediates protection, while the cytokine is dispensable for protective immune responses against low-dose infection with the less virulent strain H37rv. Here, we show that after experimental infection with high doses of Mtb H37rv, IL-17A-deficient (-/-) mice exhibited high susceptibility to the infection, which was mediated by the strong accumulation of neutrophils in the infected lung tissue. Accordingly, we observed nearly unrestricted bacterial replication within the neutrophils, indicating that they may serve as a survival niche for Mtb. By use of IL-17A/IL-17F-double-deficient mice, we demonstrated that the susceptibility in the absence of IL-17A is mediated by a compensatory expression of IL-17F, which, however, appeared not to be dependent on neutrophils. Together, our results illustrate the compensatory potential of the Th17-secreted cytokines IL-17A and IL-17F in the context of experimental TB and once again emphasize the detrimental effect of excessive neutrophil infiltration in response to Mtb.


Assuntos
Interleucina-17 , Tuberculose , Animais , Citocinas/metabolismo , Interleucina-17/deficiência , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/metabolismo , Tuberculose/imunologia
4.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32571988

RESUMO

The interaction of dendritic cells and macrophages with a variety of rigid noncellular particles triggers activation of the NLRP3 inflammasome and consequent secretion of interleukin 1ß (IL-1ß). Noncellular particles can also be generated in the context of helminth infection, since these large pathogens often shed their outermost structures during growth and/or molting. One such structure is the massive, mucin-based, soft, flexible laminated layer (LL), which protects the larval stages of cestodes of the genus Echinococcus We show that particles from the Echinococcus granulosus LL (pLL) trigger NLRP3- and caspase-1-dependent IL-1ß in lipopolysaccharide (LPS)-primed mouse bone marrow-derived dendritic cells (BMDC). This response can be elicited by pLL too large for phagocytosis and nonetheless requires actin dynamics, Syk, and phosphatidylinositol 3-kinase (PI3K). These three requirements had already been observed in our previous study on the alteration by pLL of CD86, CD40, IL-10, and IL-12 responses to LPS in BMDC; however, we now show that these alterations are independent of NLRP3 and caspase-1. In other words, an initial interaction with particles requiring actin dynamics, Syk, and PI3K, but not phagocytosis, elicits both NLRP3-dependent and NLRP3-independent responses. Intraperitoneal injection of pLL induced IL-1ß, suggesting that contact with LL materials induces IL-1ß in the E. granulosus infection setting. Our results extend our understanding of NLRP3 inflammasome activation by noncellular particulate materials both to helminth-derived materials and to flexible/soft materials.


Assuntos
Micropartículas Derivadas de Células/química , Células Dendríticas/efeitos dos fármacos , Echinococcus granulosus/química , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Caspase 1/genética , Caspase 1/imunologia , Micropartículas Derivadas de Células/imunologia , Células Dendríticas/imunologia , Echinococcus granulosus/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Parasita/genética , Indazóis/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fagocitose/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais , Estilbenos/farmacologia , Sulfonamidas/farmacologia , Wortmanina/farmacologia
5.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570562

RESUMO

The larval stage of the cestode Echinococcus granulosus causes cystic echinococcosis in humans and livestock. This larva is protected by the millimeter-thick, mucin-based laminated layer (LL), from which materials have to be shed to allow parasite growth. We previously reported that dendritic cells (DCs) respond to microscopic pieces of the mucin gel of the LL (pLL) with unconventional maturation phenotypes, in the absence or presence of Toll-like receptor (TLR) agonists, including lipopolysaccharide (LPS). We also reported that the presence of pLL inhibited the activating phosphorylation of the phosphatidylinositol 3-kinase (PI3K) effector Akt induced by granulocyte-macrophage colony-stimulating factor or interleukin-4. We now show that the inhibitory effect of pLL extends to LPS as a PI3K activator, and results in diminished phosphorylation of GSK3 downstream from Akt. Functionally, the inhibition of Akt and GSK3 phosphorylation are linked to the blunted upregulation of CD40, a major feature of the unconventional maturation phenotype. Paradoxically, all aspects of unconventional maturation induced by pLL depend on PI3K class I. Additional components of the phagocytic machinery are needed, but phagocytosis of pLL particles is not required. These observations hint at a DC response mechanism related to receptor-independent mechanisms proposed for certain crystalline and synthetic polymer-based particles; this would fit the previously reported lack of detection of molecular-level motifs necessary of the effects of pLL on DCs. Finally, we report that DCs exposed to pLL are able to condition DCs not exposed to the material so that these cannot upregulate CD40 in full in response to LPS.


Assuntos
Antígenos CD40/biossíntese , Células Dendríticas/imunologia , Echinococcus granulosus/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Equinococose/imunologia , Equinococose/parasitologia , Equinococose/patologia , Ativação Enzimática/imunologia , Quinase 3 da Glicogênio Sintase/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-4/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Fosforilação , Transdução de Sinais/imunologia
6.
Eur J Immunol ; 49(7): 996-1000, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267552

RESUMO

Helminth infections are a global health burden in humans and livestock and are considered to be a major evolutionary driver of type 2 immunity (orchestrated by type 2 cytokines, e.g., IL-4 and IL-13). Upon infection, helminths cause substantial damage to mucosal tissues as they migrate within the host and elicit crucial protective immune mechanisms. Macrophages, essential innate cells, are known to adopt a specific activation status (termed M(IL-4)) in type 2 cytokine environments. Yet, the role of these macrophages in mediating protective immune/wound healing responses to helminths is unclear. Furthermore, macrophage subsets can be very heterogenous (linked to their differing cellular origins) and the relative role of these subsets in the context of M(IL-4) activation to helminth infection is unknown. An article by Rolot et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2019. 49: 1067-1081] uses a variety of transgenic murine strains to revise our understanding of the complexity of how these subsets undergo M(IL-4) activation and participate in wound healing responses in helminth infection. Here we highlight that consideration of different macrophage subsets in mucosal tissues is essential when evaluating the functional role of M(IL-4) macrophages.


Assuntos
Helmintíase , Helmintos , Esquistossomose , Animais , Citocinas , Humanos , Macrófagos , Camundongos , Monócitos
7.
Methods Mol Biol ; 1784: 225-241, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761403

RESUMO

Helminth parasites infect approximately 1/3 of the human population. They induce a characteristic immune response whose main focus seems to be to contain the worm parasites and avoid excessive damage to the host. Macrophages are a central player in this response and research using helminth infection models has highlighted the heterogeneity of macrophage responses including distinct recruitment mechanisms, subset-specific activation profiles, and functional diversity. Thus, helminth infection models offer the excellent opportunity to analyze a unique part of the macrophage activation spectrum as well as dissect the functional contributions of macrophages to a wide variety of biologically relevant conditions like wound healing, fibrosis, and immunoregulation.As an example for the analysis of macrophages associated with helminth infection this chapter describes the isolation and magnetic enrichment of pleural macrophages from mice infected with the natural rodent parasite Litomosoides sigmodontis. In addition, it includes a detailed description of how to determine the ontogeny and proliferation status of macrophage populations in helminth infections. Although the focus of this chapter is on helminth infection-derived macrophages, the described methods can easily be adapted to other disease models.


Assuntos
Helmintíase Animal/parasitologia , Ativação de Macrófagos/imunologia , Macrófagos/parasitologia , Doenças Parasitárias em Animais/imunologia , Animais , Proliferação de Células/genética , Citocinas/imunologia , Filarioidea/patogenicidade , Helmintíase Animal/imunologia , Helmintos/imunologia , Helmintos/patogenicidade , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Doenças Parasitárias em Animais/patologia , Células Th2/imunologia
8.
Immunol Cell Biol ; 96(10): 1049-1059, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29758102

RESUMO

Inflammatory bowel disease (IBD) is a condition of chronic inflammatory intestinal disorder with increasing prevalence but limited effective therapies. The purine metabolic pathway is involved in various inflammatory processes including IBD. However, the mechanisms through which purine metabolism modulates IBD remain to be established. Here, we found that mucosal expression of genes involved in the purine metabolic pathway is altered in patients with active ulcerative colitis (UC), which is associated with elevated gene expression signatures of the group 3 innate lymphoid cell (ILC3)-interleukin (IL)-22 pathway. In mice, blockade of ectonucleotidases (NTPDases), critical enzymes for purine metabolism by hydrolysis of extracellular adenosine 5'-triphosphate (eATP) into adenosine, exacerbates dextran-sulfate sodium-induced intestinal injury. This exacerbation of colitis is associated with reduction of colonic IL-22-producing ILC3s, which afford essential protection against intestinal inflammation, and is rescued by exogenous IL-22. Mechanistically, activation of ILC3s for IL-22 production is reciprocally mediated by eATP and adenosine. These findings reveal that the NTPDase-mediated balance between eATP and adenosine regulates ILC3 cell function to provide protection against intestinal injury and suggest potential therapeutic strategies for treating IBD by targeting the purine-ILC3 axis.


Assuntos
Colite/etiologia , Colite/metabolismo , Imunidade Inata , Linfócitos/imunologia , Linfócitos/metabolismo , Purinas/metabolismo , Animais , Biomarcadores , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Citometria de Fluxo , Perfilação da Expressão Gênica , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Transcriptoma
10.
Immunity ; 48(1): 75-90.e6, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343442

RESUMO

The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1ß production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli.


Assuntos
Interleucina-4/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT6/metabolismo , Animais , Western Blotting , Linhagem Celular , Elementos Facilitadores Genéticos , Citometria de Fluxo , Regulação da Expressão Gênica , Inflamassomos/metabolismo , Citometria de Varredura a Laser , Lipopolissacarídeos/farmacologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Piroptose/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Elife ; 72018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29299998

RESUMO

Both TH2-dependent helminth killing and suppression of the TH2 effector response have been attributed to macrophages (MΦ) activated by IL-4 (M(IL-4)). To investigate how M(IL-4) contribute to diverse infection outcomes, the MΦ compartment of susceptible BALB/c mice and more resistant C57BL/6 mice was profiled during infection of the pleural cavity with the filarial nematode, Litomosoides sigmodontis. C57BL/6 mice exhibited a profoundly expanded resident MΦ (resMΦ) population, which was gradually replenished from the bone marrow in an age-dependent manner. Infection status did not alter the bone-marrow derived contribution to the resMΦ population, confirming local proliferation as the driver of resMΦ expansion. Significantly less resMΦ expansion was observed in the susceptible BALB/c strain, which instead exhibited an influx of monocytes that assumed an immunosuppressive PD-L2+ phenotype. Inhibition of monocyte recruitment enhanced nematode killing. Thus, the balance of monocytic vs. resident M(IL-4) numbers varies between inbred mouse strains and impacts infection outcome.


Assuntos
Movimento Celular , Proliferação de Células , Filariose/imunologia , Filariose/patologia , Filarioidea/crescimento & desenvolvimento , Filarioidea/imunologia , Macrófagos/fisiologia , Animais , Resistência à Doença , Suscetibilidade a Doenças , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Cavidade Pleural/imunologia , Cavidade Pleural/parasitologia
12.
Immunity ; 47(5): 810-812, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166582

RESUMO

Two recent Immunity papers provide new insight into efferocytosis by tissue-resident macrophages. Baratin et al. (2017) identify a resident macrophage population in the T cell zone of lymph nodes responsible for the silent uptake of vast numbers of apoptotic cells. Roberts et al. (2017) find that resident macrophages can be programmed by local tissue signals not to respond to the nucleic acid of apoptotic cells.


Assuntos
Apoptose , Linfócitos T , Linfonodos , Macrófagos , Fagocitose
13.
PLoS Pathog ; 13(3): e1006233, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28334040

RESUMO

Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Salmonelose Animal/microbiologia , Infecções por Strongylida/microbiologia , Animais , Coinfecção , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Nematospiroides dubius/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Salmonelose Animal/imunologia , Salmonella typhi/imunologia , Infecções por Strongylida/imunologia
14.
Sci Rep ; 6: 39204, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966637

RESUMO

Proliferation of macrophages is a hallmark of inflammation in many type 2 settings including helminth infections. The cellular expansion is driven by the type 2 cytokine interleukin-4 (IL-4), as well as by M-CSF, which also controls homeostatic levels of tissue resident macrophages. Cystic echinococcosis, caused by the tissue-dwelling larval stage of the cestode Echinococcus granulosus, is characterised by normally subdued local inflammation. Infiltrating host cells make contact only with the acellular protective coat of the parasite, called laminated layer, particles of which can be ingested by phagocytic cells. Here we report that a particulate preparation from this layer (pLL) strongly inhibits the proliferation of macrophages in response to IL-4 or M-CSF. In addition, pLL also inhibits IL-4-driven up-regulation of Relm-α, without similarly affecting Chitinase-like 3 (Chil3/Ym1). IL-4-driven cell proliferation and up-regulation of Relm-α are both known to depend on the phosphatidylinositol (PI3K)/Akt pathway, which is dispensable for induction of Chil3/Ym1. Exposure to pLL in vitro inhibited Akt activation in response to proliferative stimuli, providing a potential mechanism for its activities. Our results suggest that the E. granulosus laminated layer exerts some of its anti-inflammatory properties through inhibition of PI3K/Akt activation and consequent limitation of macrophage proliferation.


Assuntos
Equinococose/imunologia , Echinococcus granulosus/metabolismo , Proteínas de Helminto/imunologia , Macrófagos/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Regulação para Baixo , Feminino , Interleucina-4/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Fagocitose , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Eur J Immunol ; 46(10): 2311-2321, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27592711

RESUMO

IL-33 plays an important role in the initiation of type-2 immune responses, as well as the enhancement of type 2 effector functions. Engagement of the IL-33 receptor on macrophages facilitates polarization to an alternative activation state by amplifying IL-4 and IL-13 signaling to IL-4Rα. IL-4 and IL-13 also induce macrophage proliferation but IL-33 involvement in this process has not been rigorously evaluated. As expected, in vivo delivery of IL-33 induced IL-4Rα-dependent alternative macrophage activation in the serous cavities. IL-33 delivery also induced macrophages to proliferate but, unexpectedly, this was independent of IL-4Rα signaling. In a filarial nematode infection model in which IL-4Rα-dependent alternative activation and proliferation in the pleural cavity is well described, IL-33R was essential for alternative activation but not macrophage proliferation. Similarly, during Alternaria alternata induced airway inflammation, which provokes strong IL-33 responses, we observed that both IL-4Rα and IL-33R were required for alternative activation, while macrophage proliferation in the pleural cavity was still evident in the absence of either receptor alone. Our data show that IL-33R and IL-4Rα promote macrophage proliferation independently of each other, but both are essential for induction of alternative activation.


Assuntos
Alternaria/imunologia , Alternariose/imunologia , Filariose/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Macrófagos/fisiologia , Receptores de Superfície Celular/metabolismo , Membrana Serosa/imunologia , Animais , Proliferação de Células , Células Cultivadas , Filarioidea/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Cavidade Pleural/patologia , Receptores de Superfície Celular/genética , Transdução de Sinais
16.
Genome Med ; 8(1): 63, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27245778

RESUMO

BACKGROUND: IL-4-driven alternative macrophage activation and proliferation are characteristic features of both antihelminthic immune responses and wound healing in contrast to classical macrophage activation, which primarily occurs during inflammatory responses. The signaling pathways defining the genome-wide microRNA expression profile as well as the cellular functions controlled by microRNAs during alternative macrophage activation are largely unknown. Hence, in the current work we examined the regulation and function of IL-4-regulated microRNAs in human and mouse alternative macrophage activation. METHODS: We utilized microarray-based microRNA profiling to detect the dynamic expression changes during human monocyte-macrophage differentiation and IL-4-mediated alternative macrophage activation. The expression changes and upstream regulatory pathways of selected microRNAs were further investigated in human and mouse in vitro and in vivo models of alternative macrophage activation by integrating small RNA-seq, ChIP-seq, ChIP-quantitative PCR, and gene expression data. MicroRNA-controlled gene networks and corresponding functions were identified using a combination of transcriptomic, bioinformatic, and functional approaches. RESULTS: The IL-4-controlled microRNA expression pattern was identified in models of human and mouse alternative macrophage activation. IL-4-dependent induction of miR-342-3p and repression of miR-99b along with miR-125a-5p occurred in both human and murine macrophages in vitro. In addition, a similar expression pattern was observed in peritoneal macrophages of Brugia malayi nematode-implanted mice in vivo. By using IL4Rα- and STAT6-deficient macrophages, we were able to show that IL-4-dependent regulation of miR-342-3p, miR-99b, and miR-125a-5p is mediated by the IL-4Rα-STAT6 signaling pathway. The combination of gene expression studies and chromatin immunoprecipitation experiments demonstrated that both miR-342-3p and its host gene, EVL, are coregulated directly by STAT6. Finally, we found that miR-342-3p is capable of controlling macrophage survival through targeting an anti-apoptotic gene network including Bcl2l1. CONCLUSIONS: Our findings identify a conserved IL-4/STAT6-regulated microRNA signature in alternatively activated human and mouse macrophages. Moreover, our study indicates that miR-342-3p likely plays a pro-apoptotic role in such cells, thereby providing a negative feedback arm to IL-4-dependent macrophage proliferation.


Assuntos
Interleucina-4/imunologia , Macrófagos/citologia , Macrófagos/imunologia , MicroRNAs/genética , Transdução de Sinais , Animais , Sequência de Bases , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Sequência Conservada , Humanos , Interleucina-4/metabolismo , Ativação de Macrófagos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fator de Transcrição STAT6/genética , Análise de Sequência de RNA/métodos
17.
Immunobiology ; 220(7): 924-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25700973

RESUMO

Tissue resident macrophages have vital homeostatic roles in many tissues but their roles are less well defined in the heart. The present study aimed to identify the density, polarisation status and distribution of macrophages in the healthy murine heart and to investigate their ability to respond to immune challenge. Histological analysis of hearts from CSF-1 receptor (csf1-GFP; MacGreen) and CX3CR1 (Cx3cr1(GFP/+)) reporter mice revealed a sparse population of GFP positive macrophages that were evenly distributed throughout the left and right ventricular free walls and septum. F4/80+CD11b+ cardiac macrophages, sorted from myocardial homogenates, were able to phagocytose fluorescent beads in vitro and expressed markers typical of both 'M1' (IL-1ß, TNF and CCR2) and 'M2' activation (Ym1, Arg 1, RELMα and IL-10), suggesting no specific polarisation in healthy myocardium. Exposure to Th2 challenge by infection of mice with helminth parasites Schistosoma mansoni, or Heligmosomoides polygyrus, resulted in an increase in cardiac macrophage density, adoption of a stellate morphology and increased expression of Ym1, RELMα and CD206 (mannose receptor), indicative of 'M2' polarisation. This was dependent on recruitment of Ly6ChighCCR2+ monocytes and was accompanied by an increase in collagen content. In conclusion, in the healthy heart resident macrophages are relatively sparse and have a phagocytic role. Following Th2 challenge this population expands due to monocyte recruitment and adopts an 'M2' phenotype associated with increased tissue fibrosis.


Assuntos
Coração/parasitologia , Macrófagos/imunologia , Miocárdio/imunologia , Esquistossomose mansoni/imunologia , Infecções por Strongylida/imunologia , Animais , Antígenos de Diferenciação/metabolismo , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Proteínas de Fluorescência Verde/genética , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Lectinas/biossíntese , Lectinas Tipo C/biossíntese , Receptor de Manose , Lectinas de Ligação a Manose/biossíntese , Camundongos , Camundongos Knockout , Nematospiroides dubius/imunologia , Fagocitose/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptores de Superfície Celular/biossíntese , Receptores de Quimiocinas/genética , Schistosoma mansoni/imunologia , Esquistossomose mansoni/parasitologia , Infecções por Strongylida/parasitologia , Células Th2/imunologia , beta-N-Acetil-Hexosaminidases/biossíntese
18.
Curr Biol ; 25(5): 577-88, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25702581

RESUMO

BACKGROUND: Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. RESULTS: Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. CONCLUSIONS: In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy.


Assuntos
Apoptose/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Linfoma de Células B/fisiopatologia , Fagócitos/fisiologia , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia , Análise de Variância , Proliferação de Células/fisiologia , Fluorescência , Perfilação da Expressão Gênica , Técnicas Histológicas , Humanos , Estimativa de Kaplan-Meier , Macrófagos/fisiologia , Metaloproteinases da Matriz/metabolismo , Melanoma Experimental/fisiopatologia , Neovascularização Patológica/fisiopatologia
19.
Immunol Rev ; 262(1): 113-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25319331

RESUMO

Macrophages have long been center stage in the host response to microbial infection, but only in the past 10-15 years has there been a growing appreciation for their role in helminth infection and the associated type 2 response. Through the actions of the IL-4 receptor α (IL-4Rα), type 2 cytokines result in the accumulation of macrophages with a distinctive activation phenotype. Although our knowledge of IL-4Rα-induced genes is growing rapidly, the specific functions of these macrophages have yet to be established in most disease settings. Understanding the interplay between IL-4Rα-activated macrophages and the other cellular players is confounded by the enormous transcriptional heterogeneity within the macrophage population and by their highly plastic nature. Another level of complexity is added by the new knowledge that tissue macrophages can be derived either from a resident prenatal population or from blood monocyte recruitment and that IL-4 can increase macrophage numbers through proliferative expansion. Here, we review current knowledge on the contribution of macrophages to helminth killing and wound repair, with specific attention paid to distinct cellular origins and plasticity potential.


Assuntos
Helmintíase/imunologia , Macrófagos/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Citotoxicidade Imunológica , Helmintíase/parasitologia , Humanos , Imunomodulação , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/patologia , Regeneração , Transdução de Sinais
20.
Nat Immunol ; 15(12): 1116-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25326751

RESUMO

Enzymatically inactive chitinase-like proteins (CLPs) such as BRP-39, Ym1 and Ym2 are established markers of immune activation and pathology, yet their functions are essentially unknown. We found that Ym1 and Ym2 induced the accumulation of neutrophils through the expansion of γδ T cell populations that produced interleukin 17 (IL-17). While BRP-39 did not influence neutrophilia, it was required for IL-17 production in γδ T cells, which suggested that regulation of IL-17 is an inherent feature of mouse CLPs. Analysis of a nematode infection model, in which the parasite migrates through the lungs, revealed that the IL-17 and neutrophilic inflammation induced by Ym1 limited parasite survival but at the cost of enhanced lung injury. Our studies describe effector functions of CLPs consistent with innate host defense traits of the chitinase family.


Assuntos
Quitinases/imunologia , Glicoproteínas/imunologia , Lectinas/imunologia , Infecções por Nematoides/imunologia , Infiltração de Neutrófilos/imunologia , beta-N-Acetil-Hexosaminidases/imunologia , Animais , Proteína 1 Semelhante à Quitinase-3 , Citotoxicidade Imunológica/imunologia , Citometria de Fluxo , Imunofluorescência , Imunidade Inata/imunologia , Inflamação/imunologia , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nematoides , Neutrófilos/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/imunologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA