Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6116, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777530

RESUMO

Molecular screens comparing different disease states to identify candidate genes rely on the availability of fast, reliable and multiplexable systems to interrogate genes of interest. CRISPR/Cas9-based reverse genetics is a promising method to eventually achieve this. However, such methods are sorely lacking for multi-nucleated muscle fibers, since highly efficient nuclei editing is a requisite to robustly inactive candidate genes. Here, we couple Cre-mediated skeletal muscle fiber-specific Cas9 expression with myotropic adeno-associated virus-mediated sgRNA delivery to establish a system for highly effective somatic gene deletions in mice. Using well-characterized genes, we show that local or systemic inactivation of these genes copy the phenotype of traditional gene-knockout mouse models. Thus, this proof-of-principle study establishes a method to unravel the function of individual genes or entire signaling pathways in adult skeletal muscle fibers without the cumbersome requirement of generating knockout mice.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Deleção de Genes , RNA Guia de Sistemas CRISPR-Cas , Camundongos Knockout , Fibras Musculares Esqueléticas
2.
Commun Biol ; 5(1): 1141, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302954

RESUMO

Muscle size is controlled by the PI3K-PKB/Akt-mTORC1-FoxO pathway, which integrates signals from growth factors, energy and amino acids to activate protein synthesis and inhibit protein breakdown. While mTORC1 activity is necessary for PKB/Akt-induced muscle hypertrophy, its constant activation alone induces muscle atrophy. Here we show that this paradox is based on mTORC1 activity promoting protein breakdown through the ubiquitin-proteasome system (UPS) by simultaneously inducing ubiquitin E3 ligase expression via feedback inhibition of PKB/Akt and proteasome biogenesis via Nuclear Factor Erythroid 2-Like 1 (Nrf1). Muscle growth was restored by reactivation of PKB/Akt, but not by Nrf1 knockdown, implicating ubiquitination as the limiting step. However, both PKB/Akt activation and proteasome depletion by Nrf1 knockdown led to an immediate disruption of proteome integrity with rapid accumulation of damaged material. These data highlight the physiological importance of mTORC1-mediated PKB/Akt inhibition and point to juxtaposed roles of the UPS in atrophy and proteome integrity.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteostase , Proteoma/metabolismo , Músculo Esquelético/metabolismo
3.
Am J Physiol Endocrinol Metab ; 323(2): E133-E144, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723227

RESUMO

Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC), and each complex has different intracellular targets. Although mTORC1's role in ß-cells has been extensively studied, less is known about mTORC2's function in ß-cells. Here, we show that mice with constitutive and inducible ß-cell-specific deletion of RICTOR (ßRicKO and ißRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in ßRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTORC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in ßRicKO islets. In conclusion, mTORC2 regulates glucose-stimulated insulin secretion by promoting actin filament remodeling.NEW & NOTEWORTHY The current studies uncover a novel mechanism linking mTORC2 signaling to glucose-stimulated insulin secretion by modulation of the actin filaments. This work also underscores the important role of GLP-1 in rescuing defects in insulin secretion by modulating actin polymerization and suggests that this effect is independent of mTORC2 signaling.


Assuntos
Actinas , Insulina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Serina-Treonina Quinases TOR/metabolismo
4.
J Cachexia Sarcopenia Muscle ; 11(1): 259-273, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31697050

RESUMO

BACKGROUND: The balance between protein synthesis and degradation (proteostasis) is a determining factor for muscle size and function. Signalling via the mammalian target of rapamycin complex 1 (mTORC1) regulates proteostasis in skeletal muscle by affecting protein synthesis and autophagosomal protein degradation. Indeed, genetic inactivation of mTORC1 in developing and growing muscle causes atrophy resulting in a lethal myopathy. However, systemic dampening of mTORC1 signalling by its allosteric inhibitor rapamycin is beneficial at the organismal level and increases lifespan. Whether the beneficial effect of rapamycin comes at the expense of muscle mass and function is yet to be established. METHODS: We conditionally ablated the gene coding for the mTORC1-essential component raptor in muscle fibres of adult mice [inducible raptor muscle-specific knockout (iRAmKO)]. We performed detailed phenotypic and biochemical analyses of iRAmKO mice and compared them with muscle-specific raptor knockout (RAmKO) mice, which lack raptor in developing muscle fibres. We also used polysome profiling and proteomics to assess protein translation and associated signalling in skeletal muscle of iRAmKO mice. RESULTS: Analysis at different time points reveal that, as in RAmKO mice, the proportion of oxidative fibres decreases, but slow-type fibres increase in iRAmKO mice. Nevertheless, no significant decrease in body and muscle mass or muscle fibre area was detected up to 5 months post-raptor depletion. Similarly, ex vivo muscle force was not significantly reduced in iRAmKO mice. Despite stable muscle size and function, inducible raptor depletion significantly reduced the expression of key components of the translation machinery and overall translation rates. CONCLUSIONS: Raptor depletion and hence complete inhibition of mTORC1 signalling in fully grown muscle leads to metabolic and morphological changes without inducing muscle atrophy even after 5 months. Together, our data indicate that maintenance of muscle size does not require mTORC1 signalling, suggesting that rapamycin treatment is unlikely to negatively affect muscle mass and function.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Músculo Esquelético/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Knockout , Comportamento Sedentário , Transdução de Sinais
5.
Nat Commun ; 10(1): 3187, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320633

RESUMO

Loss of innervation of skeletal muscle is a determinant event in several muscle diseases. Although several effectors have been identified, the pathways controlling the integrated muscle response to denervation remain largely unknown. Here, we demonstrate that PKB/Akt and mTORC1 play important roles in regulating muscle homeostasis and maintaining neuromuscular endplates after nerve injury. To allow dynamic changes in autophagy, mTORC1 activation must be tightly balanced following denervation. Acutely activating or inhibiting mTORC1 impairs autophagy regulation and alters homeostasis in denervated muscle. Importantly, PKB/Akt inhibition, conferred by sustained mTORC1 activation, abrogates denervation-induced synaptic remodeling and causes neuromuscular endplate degeneration. We establish that PKB/Akt activation promotes the nuclear import of HDAC4 and is thereby required for epigenetic changes and synaptic gene up-regulation upon denervation. Hence, our study unveils yet-unknown functions of PKB/Akt-mTORC1 signaling in the muscle response to nerve injury, with important implications for neuromuscular integrity in various pathological conditions.


Assuntos
Autofagia/fisiologia , Histona Desacetilases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Denervação Muscular , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Placa Motora/patologia , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética
6.
Nucleic Acids Res ; 47(14): 7618-7632, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31127278

RESUMO

Spinal Muscular Atrophy results from loss-of-function mutations in SMN1 but correcting aberrant splicing of SMN2 offers hope of a cure. However, current splice therapy requires repeated infusions and is expensive. We previously rescued SMA mice by promoting the inclusion of a defective exon in SMN2 with germline expression of Exon-Specific U1 snRNAs (ExspeU1). Here we tested viral delivery of SMN2 ExspeU1s encoded by adeno-associated virus AAV9. Strikingly the virus increased SMN2 exon 7 inclusion and SMN protein levels and rescued the phenotype of mild and severe SMA mice. In the severe mouse, the treatment improved the neuromuscular function and increased the life span from 10 to 219 days. ExspeU1 expression persisted for 1 month and was effective at around one five-hundredth of the concentration of the endogenous U1snRNA. RNA-seq analysis revealed our potential drug rescues aberrant SMA expression and splicing profiles, which are mostly related to DNA damage, cell-cycle control and acute phase response. Vastly overexpressing ExspeU1 more than 100-fold above the therapeutic level in human cells did not significantly alter global gene expression or splicing. These results indicate that AAV-mediated delivery of a modified U1snRNP particle may be a novel therapeutic option against SMA.


Assuntos
Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Distrofia Muscular Animal/terapia , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Éxons/genética , Células HEK293 , Humanos , Camundongos Knockout , Atrofia Muscular Espinal/genética , Distrofia Muscular Animal/genética , Mutação , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U1/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
7.
Am J Physiol Cell Physiol ; 313(6): C604-C611, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971834

RESUMO

Mechanistic target of rapamycin (mTOR) resides as two complexes within skeletal muscle. mTOR complex 1 [mTORC1-regulatory associated protein of mTOR (Raptor) positive] regulates skeletal muscle growth, whereas mTORC2 [rapamycin-insensitive companion of mTOR (Rictor) positive] regulates insulin sensitivity. To examine the regulation of these complexes in human skeletal muscle, we utilized immunohistochemical analysis to study the localization of mTOR complexes before and following protein-carbohydrate feeding (FED) and resistance exercise plus protein-carbohydrate feeding (EXFED) in a unilateral exercise model. In basal samples, mTOR and the lysosomal marker lysosomal associated membrane protein 2 (LAMP2) were highly colocalized and remained so throughout. In the FED and EXFED states, mTOR/LAMP2 complexes were redistributed to the cell periphery [wheat germ agglutinin (WGA)-positive staining] (time effect; P = 0.025), with 39% (FED) and 26% (EXFED) increases in mTOR/WGA association observed 1 h post-feeding/exercise. mTOR/WGA colocalization continued to increase in EXFED at 3 h (48% above baseline) whereas colocalization decreased in FED (21% above baseline). A significant effect of condition (P = 0.05) was noted suggesting mTOR/WGA colocalization was greater during EXFED. This pattern was replicated in Raptor/WGA association, where a significant difference between EXFED and FED was noted at 3 h post-exercise/feeding (P = 0.014). Rictor/WGA colocalization remained unaltered throughout the trial. Alterations in mTORC1 cellular location coincided with elevated S6K1 kinase activity, which rose to a greater extent in EXFED compared with FED at 1 h post-exercise/feeding (P < 0.001), and only remained elevated in EXFED at the 3 h time point (P = 0.037). Collectively these data suggest that mTORC1 redistribution within the cell is a fundamental response to resistance exercise and feeding, whereas mTORC2 is predominantly situated at the sarcolemma and does not alter localization.


Assuntos
Ingestão de Alimentos , Metabolismo Energético , Exercício Físico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Músculo Quadríceps/enzimologia , Adulto , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/enzimologia , Masculino , Contração Muscular , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Treinamento Resistido , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sarcolema/enzimologia , Fatores de Tempo , Adulto Jovem
8.
Cell Res ; 27(5): 604-605, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28290465

RESUMO

Long non-coding RNAs (lncRNAs) belong to the ever-increasing number of transcripts that are thought not to encode proteins. A recent study has now identified a small polypeptide encoded by the lncRNA LINC00961 that inhibits amino acid-induced mTORC1 activation in skeletal muscle.


Assuntos
RNA Longo não Codificante , Citoplasma , Alvo Mecanístico do Complexo 1 de Rapamicina , Peptídeos , Regeneração
9.
J Neuromuscul Dis ; 3(2): 127-155, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27854220

RESUMO

Recent research has revealed that autophagy, a major catabolic process in cells, is dysregulated in several neuromuscular diseases and contributes to the muscle wasting caused by non-muscle disorders (e.g. cancer cachexia) or during aging (i.e. sarcopenia). From there, the idea arose to interfere with autophagy or manipulate its regulatory signalling to help restore muscle homeostasis and attenuate disease progression. The major difficulty for the development of therapeutic strategies is to restore a balanced autophagic flux, due to the dynamic nature of autophagy. Thus, it is essential to better understand the mechanisms and identify the signalling pathways at play in the control of autophagy in skeletal muscle. A comprehensive analysis of the autophagic flux and of the causes of its dysregulation is required to assess the pathogenic role of autophagy in diseased muscle. Furthermore, it is essential that experiments distinguish between primary dysregulation of autophagy (prior to disease onset) and impairments as a consequence of the pathology. Of note, in most muscle disorders, autophagy perturbation is not caused by genetic modification of an autophagy-related protein, but rather through indirect alteration of regulatory signalling or lysosomal function. In this review, we will present the mechanisms involved in autophagy, and those ensuring its tight regulation in skeletal muscle. We will then discuss as to how autophagy dysregulation contributes to the pathogenesis of neuromuscular disorders and possible ways to interfere with this process to limit disease progression.


Assuntos
Autofagia/fisiologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/fisiopatologia , Doenças Neuromusculares/fisiopatologia , Proteínas Relacionadas à Autofagia/metabolismo , Caquexia/metabolismo , Caquexia/fisiopatologia , Humanos , Lisossomos/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Doenças Neuromusculares/metabolismo , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia , Transdução de Sinais
10.
Skelet Muscle ; 6: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27004103

RESUMO

BACKGROUND: The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. RESULTS: We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content. CONCLUSIONS: Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Complexos Multiproteicos/metabolismo , Músculo Esquelético/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores Etários , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Composição Corporal , Dieta Hiperlipídica , Genótipo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Insulina/sangue , Resistência à Insulina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Doenças Musculares/enzimologia , Doenças Musculares/genética , Doenças Musculares/fisiopatologia , Obesidade/enzimologia , Obesidade/genética , Obesidade/prevenção & controle , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Magreza/enzimologia , Magreza/genética , Fatores de Tempo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Regulação para Cima
11.
Cell Rep ; 14(5): 1206-1217, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26804903

RESUMO

Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Memória Imunológica , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Proteína Forkhead Box O1 , Memória Imunológica/genética , Interleucina-2/biossíntese , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Companheira de mTOR Insensível à Rapamicina , Proteínas com Domínio T/metabolismo , Transcrição Gênica
12.
Cardiovasc Res ; 109(1): 103-14, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26598511

RESUMO

AIMS: Mammalian target of rapamycin (mTOR), a central regulator of growth and metabolism, has tissue-specific functions depending on whether it is part of mTOR complex 1 (mTORC1) or mTORC2. We have previously shown that mTORC1 is required for adaptive cardiac hypertrophy and maintenance of function under basal and pressure-overload conditions. In the present study, we aimed to identify functions of mTORC2 in the heart. METHODS AND RESULTS: Using tamoxifen-inducible cardiomyocyte-specific gene deletion, we generated mice deficient for cardiac rapamycin-insensitive companion of mTOR (rictor), an essential and specific component of mTORC2. Under basal conditions, rictor deficiency did not affect cardiac growth and function in young mice and also had no effects in adult mice. However, transverse aortic constriction caused dysfunction in the rictor-deficient hearts, whereas function was maintained in controls after 1 week of pressure overload. Adaptive increases in cardiac weight and cardiomyocyte cross-sectional area, fibrosis, and hypertrophic and metabolic gene expression were not different between the rictor-deficient and control mice. In control mice, maintained function was associated with increased protein levels of rictor, protein kinase C (PKC)ßII, and PKCδ, whereas rictor ablation abolished these increases. Rictor deletion also significantly decreased PKCε at baseline and after pressure overload. Our data suggest that reduced PKCε and the inability to increase PKCßII and PKCδ abundance are, in accordance with their known function, responsible for decreased contractile performance of the rictor-deficient hearts. CONCLUSION: Our study demonstrates that mTORC2 is implicated in maintaining contractile function of the pressure-overloaded male mouse heart.


Assuntos
Cardiomegalia/fisiopatologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Função Ventricular/fisiologia , Animais , Apoptose , Proteínas de Transporte/fisiologia , Fibrose , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Fosfoproteínas/fisiologia , Fosforilação , Proteína Quinase C/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais
13.
Sci Rep ; 5: 17705, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26635098

RESUMO

To explore the general requirement of endothelial mTORC2 during embryonic and adolescent development, we knocked out the essential mTORC2 component Rictor in the mouse endothelium in the embryo, during adolescence and in endothelial cells in vitro. During embryonic development, Rictor knockout resulted in growth retardation and lethality around embryonic day 12. We detected reduced peripheral vascularization and delayed ossification of developing fingers, toes and vertebrae during this confined midgestational period. Rictor knockout did not affect viability, weight gain, and vascular development during further adolescence. However during this period, Rictor knockout prevented skin capillaries to gain larger and heterogeneously sized diameters and remodeling into tortuous vessels in response to FGF2. Rictor knockout strongly reduced extensive FGF2-induced neovascularization and prevented hemorrhage in FGF2-loaded matrigel plugs. Rictor knockout also disabled the formation of capillary-like networks by FGF2-stimulated mouse aortic endothelial cells in vitro. Low RICTOR expression was detected in quiescent, confluent mouse aortic endothelial cells, whereas high doses of FGF2 induced high RICTOR expression that was associated with strong mTORC2-specific protein kinase Cα and AKT phosphorylation. We demonstrate that the endothelial FGF-RICTOR axis is not required during endothelial quiescence, but crucial for midgestational development and sustained and extensive neovascularization in the adult.


Assuntos
Proteínas de Transporte/biossíntese , Desenvolvimento Embrionário/genética , Fator 2 de Crescimento de Fibroblastos/genética , Neovascularização Fisiológica/genética , Animais , Proteínas de Transporte/genética , Endotélio/metabolismo , Fator 2 de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Hemorragia/genética , Hemorragia/patologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação , Proteína Quinase C-alfa/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
Sci Signal ; 8(402): ra113, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26554817

RESUMO

Skeletal muscle is the largest organ, comprising 40% of the total body lean mass, and affects whole-body metabolism in multiple ways. We investigated the signaling pathways involved in this process using TSCmKO mice, which have a skeletal muscle-specific depletion of TSC1 (tuberous sclerosis complex 1). This deficiency results in the constitutive activation of mammalian target of rapamycin complex 1 (mTORC1), which enhances cell growth by promoting protein synthesis. TSCmKO mice were lean, with increased insulin sensitivity, as well as changes in white and brown adipose tissue and liver indicative of increased fatty acid oxidation. These differences were due to increased plasma concentrations of fibroblast growth factor 21 (FGF21), a hormone that stimulates glucose uptake and fatty acid oxidation. The skeletal muscle of TSCmKO mice released FGF21 because of mTORC1-triggered endoplasmic reticulum (ER) stress and activation of a pathway involving PERK (protein kinase RNA-like ER kinase), eIF2α (eukaryotic translation initiation factor 2α), and ATF4 (activating transcription factor 4). Treatment of TSCmKO mice with a chemical chaperone that alleviates ER stress reduced FGF21 production in muscle and increased body weight. Moreover, injection of function-blocking antibodies directed against FGF21 largely normalized the metabolic phenotype of the mice. Thus, sustained activation of mTORC1 signaling in skeletal muscle regulated whole-body metabolism through the induction of FGF21, which, over the long term, caused severe lipodystrophy.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Glucose/metabolismo , Resistência à Insulina , Lipodistrofia/etiologia , Lipodistrofia/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Oxirredução , Fenótipo , Fenilbutiratos/farmacologia , Transdução de Sinais , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
15.
J Clin Invest ; 125(4): 1446-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25798619

RESUMO

Retinitis pigmentosa (RP) is an inherited photoreceptor degenerative disorder that results in blindness. The disease is often caused by mutations in genes that are specific to rod photoreceptors; however, blindness results from the secondary loss of cones by a still unknown mechanism. Here, we demonstrated that the mammalian target of rapamycin complex 1 (mTORC1) is required to slow the progression of cone death during disease and that constitutive activation of mTORC1 in cones is sufficient to maintain cone function and promote long-term cone survival. Activation of mTORC1 in cones enhanced glucose uptake, retention, and utilization, leading to increased levels of the key metabolite NADPH. Moreover, cone death was delayed in the absence of the NADPH-sensitive cell death protease caspase 2, supporting the contribution of reduced NADPH in promoting cone death. Constitutive activation of mTORC1 preserved cones in 2 mouse models of RP, suggesting that the secondary loss of cones is caused mainly by metabolic deficits and is independent of a specific rod-associated mutation. Together, the results of this study address a longstanding question in the field and suggest that activating mTORC1 in cones has therapeutic potential to prolong vision in RP.


Assuntos
Complexos Multiproteicos/fisiologia , Células Fotorreceptoras Retinianas Cones/patologia , Retinose Pigmentar/patologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Apoptose , Caspase 2/deficiência , Caspase 2/fisiologia , Sobrevivência Celular , Glucose/metabolismo , Insulina/farmacologia , Insulina/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Modelos Neurológicos , NADP/fisiologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/fisiologia , Proteína Regulatória Associada a mTOR , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Transdução de Sinais/fisiologia
16.
Carcinogenesis ; 36(4): 487-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25740823

RESUMO

Activation of signaling dependent on the mammalian target of rapamycin (mTOR) has been demonstrated in a variety of human malignancies, and our previous work suggests that mTOR complex (mTORC) 1 and mTORC2 may play unique roles in skin tumorigenesis. The purpose of these studies was to investigate the function of mTORC2-dependent pathways in skin tumor development and the maintenance of established tumors. Using mice that allow spatial and temporal control of mTORC2 in epidermis by conditional knockout of its essential component Rictor, we studied the effect of mTORC2 loss on both epidermal proliferation and chemical carcinogenesis. The results demonstrate that mTORC2 is dispensable for both normal epidermal proliferation and the hyperproliferative response to treatment with tetradecanoyl phorbol acetate (TPA). In contrast, deletion of epidermal Rictor prior to initiation in DMBA/TPA chemical carcinogenesis was sufficient to dramatically delay tumor development and resulted in reduced tumor number and size compared with control groups. Silencing of Rictor expression in tumor-bearing animals triggered regression of established tumors and increased caspase-3 cleavage without changes in proliferation. In vitro experiments demonstrate an increased sensitivity to caspase-dependent apoptosis in the absence of rictor, which is dependent on mTORC2 signaling. These studies demonstrate that mTORC2 activation is essential for keratinocyte survival, and suggest that inhibition of mTORC2 has value in chemoprevention by eliminating carcinogen-damaged cells during the early stages of tumorigenesis, and in therapy of existing tumors by restricting critical pro-survival pathways.


Assuntos
Proteínas de Transporte/genética , Transformação Celular Neoplásica/genética , Complexos Multiproteicos/genética , Neoplasias Cutâneas/genética , Serina-Treonina Quinases TOR/genética , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Carcinógenos/farmacologia , Caspase 3/metabolismo , Proliferação de Células/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Células Cultivadas , Quimioprevenção , Queratinócitos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais , Neoplasias Cutâneas/induzido quimicamente , Acetato de Tetradecanoilforbol/farmacologia , Raios Ultravioleta/efeitos adversos
17.
Stem Cells ; 33(4): 1359-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25537496

RESUMO

Adipocytes (AdCs) and osteoblasts (OBs) are derived from mesenchymal stem cells (MSCs) and differentiation toward either lineage is both mutually exclusive and transcriptionally controlled. Recent studies implicate the mammalian target of rapamycin (mTOR) pathway as important in determining MSC fate, with inhibition of mTOR promoting OB differentiation and suppressing AdC differentiation. mTOR functions within two distinct multiprotein complexes, mTORC1 and mTORC2, each of which contains the unique adaptor protein, raptor or rictor, respectively. While compounds used to study mTOR signaling, such as rapamycin and related analogs, primarily inhibit mTORC1, prolonged exposure can also disrupt mTORC2 function, confounding interpretation of inhibitor studies. As a result, the relative contribution of mTORC1 and mTORC2 to MSC fate determination remains unclear. In this study, we generated primary mouse MSCs deficient in either Rptor (RapKO) or Rictor (RicKO) using the Cre/loxP system. Cre-mediated deletion of Rptor or Rictor resulted in impaired mTORC1 and mTORC2 signaling, respectively. Under lineage-inductive culture conditions, RapKO MSCs displayed a reduced capacity to form lipid-laden AdCs and an increased capacity to form a mineralized matrix. In contrast, RicKO MSCs displayed reduced osteogenic differentiation capacity and enhanced adipogenic differentiation potential. Taken together, our findings reveal distinct roles for mTORC1 and mTORC2 in MSC lineage commitment.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Proliferação de Células/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Knockout
18.
Cell Tissue Res ; 358(2): 465-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25107608

RESUMO

Barrier characteristics of brain endothelial cells forming the blood-brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, ß-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and ß-catenin and the junctional protein ZO-1 to brain endothelial junctions.


Assuntos
Junções Aderentes/metabolismo , Agrina/metabolismo , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Proliferação de Células , Galinhas , Células Endoteliais/citologia , Células HEK293 , Humanos , Camundongos , Microvasos/citologia , Microvasos/metabolismo , Permeabilidade , Estabilidade Proteica , Transporte Proteico , Coloração e Rotulagem , Proteína da Zônula de Oclusão-1/metabolismo , beta Catenina/metabolismo
19.
J Immunol ; 193(4): 1759-65, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015820

RESUMO

Invariant NKT (iNKT) cells play critical roles in bridging innate and adaptive immunity. The Raptor containing mTOR complex 1 (mTORC1) has been well documented to control peripheral CD4 or CD8 T cell effector or memory differentiation. However, the role of mTORC1 in iNKT cell development and function remains largely unknown. By using mice with T cell-restricted deletion of Raptor, we show that mTORC1 is selectively required for iNKT but not for conventional T cell development. Indeed, Raptor-deficient iNKT cells are mostly blocked at thymic stage 1-2, resulting in a dramatic decrease of terminal differentiation into stage 3 and severe reduction of peripheral iNKT cells. Moreover, residual iNKT cells in Raptor knockout mice are impaired in their rapid cytokine production upon αGalcer challenge. Bone marrow chimera studies demonstrate that mTORC1 controls iNKT differentiation in a cell-intrinsic manner. Collectively, our data provide the genetic evidence that iNKT cell development and effector functions are under the control of mTORC1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/imunologia , Complexos Multiproteicos/genética , Células T Matadoras Naturais/citologia , Serina-Treonina Quinases TOR/genética , Animais , Antígenos CD/biossíntese , Antígenos de Diferenciação de Linfócitos T/biossíntese , Linfócitos T CD8-Positivos/imunologia , Citocinas/biossíntese , Memória Imunológica , Interferon gama/biossíntese , Lectinas Tipo C/biossíntese , Ativação Linfocitária/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Proteína Regulatória Associada a mTOR , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/biossíntese
20.
J Mol Cell Biol ; 6(3): 255-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24627160

RESUMO

Cells encountering hypoxic stress conserve resources and energy by downregulating the protein synthesis. Here we demonstrate that one mechanism in this response is the translational repression of TOP mRNAs that encode components of the translational apparatus. This mode of regulation involves TSC and Rheb, as knockout of TSC1 or TSC2 or overexpression of Rheb rescued TOP mRNA translation in oxygen-deprived cells. Stress-induced translational repression of these mRNAs closely correlates with the hypophosphorylated state of 4E-BP, a translational repressor. However, a series of 4E-BP loss- and gain-of-function experiments disprove a cause-and-effect relationship between the phosphorylation status of 4E-BP and the translational repression of TOP mRNAs under oxygen or growth factor deprivation. Furthermore, the repressive effect of anoxia is similar to that attained by the very efficient inhibition of mTOR activity by Torin 1, but much more pronounced than raptor or rictor knockout. Likewise, deficiency of raptor or rictor, even though it mildly downregulated basal translation efficiency of TOP mRNAs, failed to suppress the oxygen-mediated translational activation of TOP mRNAs. Finally, co-knockdown of TIA-1 and TIAR, two RNA-binding proteins previously implicated in translational repression of TOP mRNAs in amino acid-starved cells, failed to relieve TOP mRNA translation under other stress conditions. Thus, the nature of the proximal translational regulator of TOP mRNAs remains elusive.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Oxigênio/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Sequência de Oligopirimidina na Região 5' Terminal do RNA/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos/deficiência , Aminoácidos/metabolismo , Proteínas de Ciclo Celular , Ciclina D3/metabolismo , Fatores de Iniciação em Eucariotos , Células HEK293 , Humanos , Fosforilação , Proteína Companheira de mTOR Insensível à Rapamicina , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Estresse Fisiológico , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA