Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(7): 2122-2130, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38436119

RESUMO

Sensitive mapping of drugs and drug delivery systems is pivotal for the understanding and improvement of treatment options. Since labeling alters the physicochemical and potentially the pharmacological properties of the molecule of interest, its label-free detection by photothermal expansion is investigated. We report on a proof-of-concept study to map the cetuximab distribution by atomic-force microscopy-based infrared spectroscopy (AFM-IR). The monoclonal antibody cetuximab was applied to a human tumor oral mucosa model, consisting of a tumor epithelium on a lamina propria equivalent. Hyperspectral imaging in the wavenumber regime between 903 cm-1 and 1312 cm-1 and a probing distance between the data points down to 10 × 10 nm are used for determining the local drug distribution. The local distinction of cetuximab from the tissue background is gained by linear combination modeling making use of reference spectra of the drug and untreated models. The results from this approach are compared to principal component analyses, yielding comparable results. Even single molecule detection appears feasible. The results indicate that cetuximab penetrates the cytosol of tumor cells but does not bind to structures in the cell membrane. In conclusion, AFM-IR mapping of cetuximab proved to sensitively determine drug concentrations at an unprecedented spatial resolution without the need for drug labeling.


Assuntos
Mucosa Bucal , Neoplasias , Humanos , Cetuximab , Microscopia de Força Atômica/métodos , Anticorpos Monoclonais , Análise Espectral , Espectrofotometria Infravermelho/métodos
2.
Polymers (Basel) ; 12(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32284516

RESUMO

In this work, a method to prepare hybrid amphiphilic block copolymers consisting of biocompatible synthetic glycopolymer with non-degradable backbone and biodegradable poly(amino acid) (PAA) was developed. The glycopolymer, poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Two methods for modifying the terminal dithiobenzoate-group of PMAG was investigated to obtain the macroinitiator bearing a primary aliphatic amino group, which is required for ring-opening polymerization of N-carboxyanhydrides of hydrophobic α-amino acids. The synthesized amphiphilic block copolymers were carefully analyzed using a set of different physico-chemical methods to establish their composition and molecular weight. The developed amphiphilic copolymers tended to self-assemble in nanoparticles of different morphology that depended on the nature of the hydrophobic amino acid present in the copolymer. The hydrodynamic diameter, morphology, and cytotoxicity of polymer particles based on PMAG-b-PAA were evaluated using dynamic light scattering (DLS) and transmission electron microscopy (TEM), as well as CellTiter-Blue (CTB) assay, respectively. The redox-responsive properties of nanoparticles were evaluated in the presence of glutathione taken at different concentrations. Moreover, the encapsulation of paclitaxel into PMAG-b-PAA particles and their cytotoxicity on human lung carcinoma cells (A549) and human breast adenocarcinoma cells (MCF-7) were studied.

3.
Pharmaceutics ; 11(7)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284414

RESUMO

Chitosan has been extensively studied as a genetic drug delivery platform. However, its efficiency is limited by the strength of DNA and RNA binding. Expecting a reduced binding strength of cargo with chitosan, we proposed including heparin as a competing polyanion in the polyplexes. We developed chitosan-heparin nanoparticles by a one-step process for the local delivery of oligonucleotides. The size of the polyplexes was dependent on the mass ratio of polycation to polyanion. The mechanism of oligonucleotide release was pH-dependent and associated with polyplex swelling and collapse of the polysaccharide network. Inclusion of heparin enhanced the oligonucleotide release from the chitosan-based polyplexes. Furthermore, heparin reduced the toxicity of polyplexes in the cultured cells. The cell uptake of chitosan-heparin polyplexes was equal to that of chitosan polyplexes, but heparin increased the transfection efficiency of the polyplexes two-fold. The application of chitosan-heparin small interfering RNA (siRNA) targeted to vascular endothelial growth factor (VEGF) silencing of ARPE-19 cells was 25% higher. Overall, chitosan-heparin polyplexes showed a significant improvement of gene release inside the cells, transfection, and gene silencing efficiency in vitro, suggesting that this fundamental strategy can further improve the transfection efficiency with application of non-viral vectors.

4.
J Phys Chem Lett ; 9(19): 5827-5832, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30234991

RESUMO

Benzene is the simplest aromatic molecule with intermolecular π-π interactions. Because ordered liquids are key structures used to study chemical and biological phenomena in the liquid state, ordered structures of benzene confined in nanopores have been extensively studied, whereas those in the liquid state are still unknown. In this study, we address fundamental questions regarding whether ordered structures of benzene are formed in the liquid state by using carbon K-edge X-ray absorption spectroscopy (XAS) as a sensitive local probe. By comparing unexpected temperature behaviors of the π* peak in XAS spectra with model calculations, we have investigated temperature-dependent changes of ordered structures in liquid benzene caused by the increase in abundance of the parallel sandwich orientation relative to parallel displaced structures for the higher temperature. These results are confirmed by infrared spectroscopy with additional support of vibrational mode calculations.

5.
Skin Pharmacol Physiol ; 31(2): 87-94, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29353285

RESUMO

BACKGROUND/AIMS: Airborne pollutants, such as nano-sized soot particles, are increasingly being released into the environment as a result of growing population densities and industrialization. They can absorb organic and metal compounds with potential biological activity, such as polycyclic aromatic hydrocarbons and airborne pollen allergens. Local and systemic toxicities may be induced in the skin if the particulates release their harmful components upon dermal contact. METHODS: In the present study, skin pretreatments with serum and/or shield as barrier formulations prior to exposure and washing with a cleanser subsequent to exposure were evaluated as a protection and decontamination strategy using laser scanning microscopy. RESULTS: The results indicate that while the application of serum and a cleanser was insufficient for decontamination, the pretreatment with shield prior to nanoparticle exposure followed by washing led to the removal of a considerable amount of the carbon black particles. The combined application of serum and shield before the administration of carbon black particles and subsequent washing led to their elimination from the skin samples. CONCLUSION: The application of barrier-enhancing formulations in combination with a cleanser may reduce the penetration of harmful airborne particulates by preventing their adhesion to the skin and facilitating their removal by subsequent washing with the cleanser.


Assuntos
Nanopartículas/química , Pele/química , Fuligem/química , Alérgenos/química , Animais , Descontaminação/métodos , Humanos , Lasers , Microscopia Confocal/métodos , Tamanho da Partícula , Pólen/química , Suínos
6.
Sci Rep ; 7(1): 4341, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659574

RESUMO

All over the world, different types of nanomaterials with a diversified spectrum of applications are designed and developed, especially in the field of nanomedicine. The great variety of nanoparticles (NPs), in vitro test systems and cell lines led to a vast amount of publications with conflicting data. To identify the decisive principles of these variabilities, we conducted an intercomparison study of collaborating laboratories within the German DFG Priority Program SPP1313, using well-defined experimental parameters and well-characterized NPs. The participants analyzed the in vitro biocompatibility of silica and polymer NPs on human hepatoma HepG2 cells. Nanoparticle mediated effects on cell metabolism, internalization, and inflammation were measured. All laboratories showed that both nanoparticle formulations were internalized and had a low cytotoxicity profile. Interestingly, small variations in nanoparticle preparation, cell handling and the type of culture slide influenced the nanoparticle stability and the outcomes of cell assays. The round robin test demonstrated the importance of the use of clearly defined and characterized NPs and parameters for reproducible results across laboratories. Comparative analyses of in vitro screening methods performed in multiple laboratories are absolutely essential to establish robust standard operation procedure as a prerequisite for sound hazard assessment of nanomaterials.


Assuntos
Nanopartículas/química , Polímeros/química , Dióxido de Silício/química , Nanomedicina Teranóstica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fenômenos Químicos , Células Hep G2 , Humanos , Polímeros/síntese química
7.
Opt Express ; 24(2): 1154-64, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832499

RESUMO

Nanoscale plasmonic phenomena observed in single and bi-layers of molybdenum disulfide (MoS(2)) on silicon dioxide (SiO(2)) are reported. A scattering type scanning near-field optical microscope (s-SNOM) with a broadband synchrotron radiation (SR) infrared source was used. We also present complementary optical mapping using tunable CO(2)-laser radiation. Specifically, there is a correlation of the topography of well-defined MoS(2) islands grown by chemical vapor deposition, as determined by atomic force microscopy, with the infrared (IR) signature of MoS(2). The influence of MoS(2) islands on the SiO(2) phonon resonance is discussed. The results reveal the plasmonic character of the MoS(2) structures and their interaction with the SiO(2) phonons leading to an enhancement of the hybridized surface plasmon-phonon mode. A theoretical analysis shows that, in the case of monolayer islands, the coupling of the MoS(2) optical plasmon mode to the SiO(2) surface phonons does not affect the infrared spectrum significantly. For two-layer MoS(2), the coupling of the extra inter-plane acoustic plasmon mode with the SiO(2) surface transverse phonon leads to a remarkable increase of the surface phonon peak at 794 cm(-1). This is in agreement with the experimental data. These results show the capability of the s-SNOM technique to study local multiple excitations in complex non-homogeneous structures.

9.
Opt Express ; 22(15): 17948-58, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089414

RESUMO

We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

10.
Nanoscale ; 6(16): 9646-54, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24991655

RESUMO

Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 ± 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.


Assuntos
Meios de Contraste/química , Glicerol/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Polímeros/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Contraste/toxicidade , Glicerol/toxicidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanopartículas de Magnetita/toxicidade , Tamanho da Partícula , Polímeros/toxicidade
11.
J Control Release ; 185: 45-50, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24727058

RESUMO

A growing intended or accidental exposure to nanoparticles asks for the elucidation of potential toxicity linked to the penetration of normal and lesional skin. We studied the skin penetration of dye-tagged dendritic core-multishell (CMS) nanotransporters and of Nile red loaded CMS nanotransporters using fluorescence microscopy. Normal and stripped human skin ex vivo as well as normal reconstructed human skin and in vitro skin disease models served as test platforms. Nile red was delivered rapidly into the viable epidermis and dermis of normal skin, whereas the highly flexible CMS nanotransporters remained solely in the stratum corneum after 6h but penetrated into deeper skin layers after 24h exposure. Fluorescence lifetime imaging microscopy proved a stable dye-tag and revealed striking nanotransporter-skin interactions. The viable layers of stripped skin were penetrated more efficiently by dye-tagged CMS nanotransporters and the cargo compared to normal skin. Normal reconstructed human skin reflected the penetration of Nile red and CMS nanotransporters in human skin and both, the non-hyperkeratotic non-melanoma skin cancer and hyperkeratotic peeling skin disease models come along with altered absorption in the skin diseases.


Assuntos
Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Oxazinas/administração & dosagem , Pele/metabolismo , Portadores de Fármacos/análise , Feminino , Humanos , Microscopia de Fluorescência , Nanopartículas/análise , Oxazinas/farmacocinética , Tamanho da Partícula , Pele/patologia , Absorção Cutânea , Dermatopatias/metabolismo , Dermatopatias/patologia
12.
Opt Express ; 21(3): 2913-9, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481749

RESUMO

We demonstrate scanning near-field optical microscopy with a spatial resolution below 100 nm by using low intensity broadband synchrotron radiation in the IR regime. The use of such a broadband radiation source opens up the possibility to perform nano-Fourier-transform infrared spectroscopy over a wide spectral range.


Assuntos
Aumento da Imagem/instrumentação , Microscopia , Nanotecnologia/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Síncrotrons/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
13.
J Chem Phys ; 138(14): 144302, 2013 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24981530

RESUMO

High resolution X-ray spectroscopic studies on free SF6 molecules and SF6 clusters near the S 2p ionization thresholds are reported. Spectral changes occurring in clusters for the intense molecular-like S 2p1/2,3/2 → 6a1g-, 2t2g-, and 4eg-resonances are examined in detail. Neither gas-to-cluster spectral shifts nor changes in peak shape are observed for the pre-edge 6a1g-band. Significant changes in band shape and distinct gas-to-cluster shifts occur in the S 2p1/2,3/2 → 2t2g- and 4eg-transitions. These are found in the S 2p-ionization continua. The quasiatomic approach is used to assign the experimental results. It is shown that a convolution of asymmetric and symmetric contributions from Lorentzian and Gaussian line shapes allows us to model the spectral distribution of oscillator strength for the S 2p1/2,3/2 → 2t2g-, and 4eg-transitions. The asymmetry is due to trapping of the photoelectron within the finite size potential barrier. The Lorentzian contribution is found to be dominating in the line shape of the S 2p → 2t2g- and 4eg-bands. The spectroscopic parameters of the spin-orbit components of both the 2t2g- and 4eg-bands are extracted and their gas-to-cluster changes are analyzed. The photoelectron trapping times in free and clustered SF6 molecules are determined. Specifically, it is shown that spectral changes in clusters reflected in core-to-valence-transitions are due to a superposition of the singly scattered photoelectron waves at the neighboring molecules with the primary and multiply scattered waves within the molecular cage.

14.
Rev Sci Instrum ; 81(8): 085107, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20815628

RESUMO

A novel instrument is presented, which permits studies on singly charged free nanoparticles in the diameter range from 1 to 30 nm using synchrotron radiation in the soft x-ray regime. It consists of a high pressure nanoparticle source, a high efficiency nanoparticle beam inlet, and an electron time-of-flight spectrometer suitable for probing surface and bulk properties of free, levitated nanoparticles. We show results from x-ray photoelectron spectroscopy study near the Si L(3,2)-edge on 8.2 nm SiO(2) particles prepared in a nanoparticle beam. The possible use of this apparatus regarding chemical reactions on the surface of nanometer-sized particles is highlighted. This approach has the potential to be exploited for process studies on heterogeneous atmospheric chemistry.

15.
J Chem Phys ; 124(3): 034707, 2006 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-16438600

RESUMO

Elastic light scattering is reported using monochromatic vacuum-ultraviolet radiation to study free, spherical silica nanoparticles prepared by approaches from colloidal chemistry, with diameters between 100 and 240 nm. The colloidal nanoparticles of defined size are transferred from an aqueous solution into the gas phase using a particle beam experiment. After focusing of the particle beam by an aerodynamic lens, the scattered light from monochromatic synchrotron radiation is measured. Angle-resolved elastically scattered light is detected, showing a strong forward-scattering component. Additional evidence for the detection of elastically scattered light comes from plotting the scattered light intensity as a function of the dimensionless parameter qR, where q is the magnitude of the scattering wave vector and R is the particle radius. This yields different power-law regimes that are assigned to scattering from the surface and the bulk of the nanoparticles. Furthermore, there is evidence for modulations in the scattered light intensity as a function of scattering angle, which is clearly distinguished from the forward-scattering component. The experimental results are compared to Mie scattering simulations for isolated particles, yielding general agreement with the experimental results. Deviations from Mie simulations are observed for samples consisting of significant amounts of aggregates. The present results indicate that the optical properties of free nanoparticles are sensitively probed by vacuum-ultraviolet radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA