Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 63, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039509

RESUMO

Direct implementation of metal-organic frameworks as the catalyst for CO2 electroreduction has been challenging due to issues such as poor conductivity, stability, and limited > 2e- products. In this study, Au nanoneedles are impregnated into a cupric porphyrin-based metal-organic framework by exploiting ligand carboxylates as the Au3+ -reducing agent, simultaneously cleaving the ligand-node linkage. Surprisingly, despite the lack of a coherent structure, the Au-inserted framework affords a superb ethylene selectivity up to 52.5% in Faradaic efficiency, ranking among the best for metal-organic frameworks reported in the literature. Through operando X-ray, infrared spectroscopies and density functional theory calculations, the enhanced ethylene selectivity is attributed to Au-activated nitrogen motifs in coordination with the Cu centers for C-C coupling at the metalloporphyrin sites. Furthermore, the Au-inserted catalyst demonstrates both improved structural and catalytic stability, ascribed to the altered charge conduction path that bypasses the incoherent framework. This study underlines the modulation of reticular metalloporphyrin structure by metal impregnation for steering the CO2 reduction reaction pathway.

2.
Nanotechnology ; 33(18)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35078155

RESUMO

Three-dimensional (3D) graphene with a high specific surface area and excellent electrical conductivity holds extraordinary potential for molecular gas sensing. Gas molecules adsorbed onto graphene serve as electron donors, leading to an increase in conductivity. However, several challenges remain for 3D graphene-based gas sensors, such as slow response and long recovery time. Therefore, research interest remains in the promotion of the sensitivity of molecular gas detection. In this study, we fabricate oxygen plasma-treated 3D graphene for the high-performance gas sensing of formaldehyde. We synthesize large-area, high-quality, 3D graphene over Ni foam by chemical vapor deposition and obtain freestanding 3D graphene foam after Ni etching. We compare three types of strategies-non-treatment, oxygen plasma, and etching in HNO3solution-for the posttreatment of 3D graphene. Eventually, the strategy for oxygen plasma-treated 3D graphene exceeds expectations, which may highlight the general gas sensing based on chemiresistors.

3.
Nat Commun ; 12(1): 6823, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819521

RESUMO

Electrochemical CO2 reduction (CO2RR) in a product-orientated and energy-efficient manner relies on rational catalyst design guided by mechanistic understandings. In this study, the effect of conducting support on the CO2RR behaviors of semi-conductive metal-organic framework (MOF) - Cu3(HITP)2 are carefully investigated. Compared to the stand-alone MOF, adding Ketjen Black greatly promotes C2H4 production with a stabilized Faradaic efficiency between 60-70% in a wide potential range and prolonged period. Multicrystalline Cu nano-crystallites in the reconstructed MOF are induced and stabilized by the conducting support via current shock and charge delocalization, which is analogous to the mechanism of dendrite prevention through conductive scaffolds in metal ion batteries. Density functional theory calculations elucidate that the contained multi-facets and rich grain boundaries promote C-C coupling while suppressing HER. This study underlines the key role of substrate-catalyst interaction, and the regulation of Cu crystalline states via conditioning the charge transport, in steering the CO2RR pathway.

4.
ACS Sens ; 6(11): 3841-3881, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34696585

RESUMO

The early diagnosis of diseases plays a vital role in healthcare and the extension of human life. Graphene-based biosensors have boosted the early diagnosis of diseases by detecting and monitoring related biomarkers, providing a better understanding of various physiological and pathological processes. They have generated tremendous interest, made significant advances, and offered promising application prospects. In this paper, we discuss the background of graphene and biosensors, including the properties and functionalization of graphene and biosensors. Second, the significant technologies adopted by biosensors are discussed, such as field-effect transistors and electrochemical and optical methods. Subsequently, we highlight biosensors for detecting various biomarkers, including ions, small molecules, macromolecules, viruses, bacteria, and living human cells. Finally, the opportunities and challenges of graphene-based biosensors and related broad research interests are discussed.


Assuntos
Técnicas Biossensoriais , Grafite , Vírus , Biomarcadores , Diagnóstico Precoce , Humanos
5.
Sci Rep ; 6: 22524, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26934833

RESUMO

The catalyst-assisted nucleation and growth mechanisms for many kinds of nanowires and nanotubes are pretty well understood. At times, though, 1D nanostructures form without a catalyst and the argued growth modes have inconsistencies. One such example is the catalyst-free growth of aluminium borate nanowires. Here we develop an in-situ catalyst-free room temperature growth route for aluminium nanowires using the electron beam in a transmission electron microscope. We provide strong experimental evidence that supports a formation process that can be viewed as a phase transition in which the generation of free-volume induced by the electron beam irradiation enhances the atomic mobility within the precursor material. The enhanced atomic mobility and specific features of the crystal structure of Al5BO9 drive the atomic rearrangement that results in the large scale formation of highly crystalline aluminium borate nanowires. The whole formation process can be completed within fractions of a second. Our developed growth mechanism might also be extended to describe the catalyst-free formation of other nanowires.

6.
Science ; 343(6176): 1228-32, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24626924

RESUMO

The excess of surface dangling bonds makes the formation of free-standing two-dimensional (2D) metals unstable and hence difficult to achieve. To date, only a few reports have demonstrated 2D metal formation over substrates. Here, we show a free-standing crystalline single-atom-thick layer of iron (Fe) using in situ low-voltage aberration-corrected transmission electron microscopy and supporting image simulations. First-principles calculations confirm enhanced magnetic properties for single-atom-thick 2D Fe membranes. This work could pave the way for new 2D structures to be formed in graphene membranes.

7.
Environ Sci Technol ; 48(7): 4048-55, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24611910

RESUMO

The catalytic carbonization of polyolefin materials to synthesize carbon nanotubes (CNTs) is a promising strategy for the processing and recycling of plastic wastes, but this approach is generally limited due to the selectivity of catalysts and the difficulties in separating the polyolefin mixture. In this study, the influence of nanosized carbon black (CB) and Ni2O3 as a novel combined catalyst system on catalyzing carbonization of polypropylene (PP), polyethylene (PE), polystyrene (PS) and their blends was investigated. We showed that this combination was efficient to promote the carbonization of these polymers to produce CNTs with high yields and of good quality. Catalytic pyrolysis and model carbonization experiments indicated that the carbonization mechanism was attributed to the synergistic effect of the combined catalysts rendered by CB and Ni2O3: CB catalyzed the degradation of PP, PE, and PS to selectively produce more aromatic compounds, which were subsequently dehydrogenated and reassembled into CNTs via the catalytic action of CB together with Ni particles. Moreover, the performance of the synthesized CNTs as the electrode of supercapacitor was investigated. The supercapacitor displayed a high specific capacitance as compared to supercapacitors using commercial CNTs and CB. This difference was attributed to the relatively larger specific surface areas of our synthetic CNTs and their more oxygen-containing groups.


Assuntos
Capacitância Elétrica , Nanotubos de Carbono/química , Níquel/química , Óxidos/química , Tamanho da Partícula , Polienos/química , Fuligem/química , Resíduos/análise , Adsorção , Catálise , Eletrodos , Modelos Teóricos , Nanotubos de Carbono/ultraestrutura , Polietileno/química , Poliestirenos/química , Análise Espectral Raman , Temperatura , Difração de Raios X
8.
ACS Nano ; 7(12): 10552-62, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24215570

RESUMO

In this work a simple and scalable approach to coat nonmagnetic nanoparticles with few-layer graphene is presented. In addition, the easy processing of such nanoparticles to remove their core, leaving only the 3D graphene nanoshell, is demonstrated. The samples are comprehensively characterized, as are their versatility in terms of functionalization and as a material for electrochemical storage. Indeed, these 3D graphene nanostructures are easily functionalized much as is found with carbon nanotubes and planar graphene. Electrochemical investigations indicate these nanostructures are promising for stable long-life battery applications. Finally, initial toxicological investigations suggest no acute health risk from these 3D graphene nanostructures.


Assuntos
Grafite/química , Nanoestruturas/química , Nanotubos de Carbono/química , Carbono/química , Linhagem Celular Tumoral , Sobrevivência Celular , Eletroquímica , Humanos , Magnetismo , Óxidos/química , Pós , Espécies Reativas de Oxigênio , Propriedades de Superfície , Temperatura , Titânio/química , Testes de Toxicidade
9.
Sci Rep ; 3: 1840, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23670649

RESUMO

Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries.


Assuntos
Compostos Ferrosos/química , Grafite/química , Nanotubos de Carbono/química , Teste de Materiais , Metalocenos , Microscopia Eletrônica de Varredura
10.
J Mater Chem B ; 1(4): 401-428, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32260810

RESUMO

Nanotechnology is providing exciting and new opportunities which are likely to revolutionize future clinical practice. The use of nanoparticles for biomedical applications is particularly exciting due to their huge potential for multi-modal approaches. This includes their use as drug delivery vectors, imaging contrast agents, hyperthermia systems and molecular targeting. Their ability to cross biological barriers, for example the blood brain barrier, makes them attractive for potential treatments in neurological disorders. There is also great hope that nanostructures will serve as platforms in future cancer therapies. Current cancer fighting strategies consist primarily of surgery, radiation therapy and chemotherapy. Each of these treatments is bound by a limit, known as the therapeutic window, which, if exceeded, causes undue harm to the patient. In the ongoing quest to improve our therapeutic arsenal, nanoparticles are emerging as exciting structures for a new generation of multi-modal therapeutics. Within this context, carbon nanostructures are amongst the leading contenders as building blocks to deliver multi-function drug delivery platforms. This review examines the various properties of carbon nanostructures that allow such multi-functionality. Recent advances on the development of novel approaches for functionalization, targeting and imaging via carbon nanostructures are discussed.

11.
J Mater Chem B ; 1(44): 6107-6114, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32260995

RESUMO

Nanographene oxides (NGO) with well-defined sizes were produced from graphite via chemical exfoliation and separated into three different size distributions (300 nm, 200 nm, and 100 nm) using intense sonication and sucrose density gradient centrifugation. Prior to carboplatin (CP) loading, the NGO was functionalized with zero generation polyamidoamide (PAMAM) which renders improved dispersibility and stability of the nanocarrier platform in physiological media. Cell viability tests were conducted on pristine NGO samples with average widths of 200 nm and 300 nm that showed a cytotoxic effect on HeLa cancer cells and mesenchymal stem cells at low (50 µg ml-1) and high (100 µg ml-1) concentrations, while the pristine NGO sample with an average width of 100 nm revealed no significant cytotoxicity at 50 µg ml-1, and only recorded a 10% level at 100 µg ml-1. After functionalization with PAMAM, the carrier was found to be able to deliver carboplatin to the cancer cells, by enhancing the drug anticancer efficiency. Moreover, the carboplatin loaded NGO carrier shows no significant effect on the viability of mesenchymal stem cells (hMSCs) even at high concentration (100 µg ml-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA