Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 23(1): 331, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953785

RESUMO

BACKGROUND: Several types of RNA in the cell are usually involved in biological processes with multiple functions. Coding RNAs code for proteins while non-coding RNAs regulate gene expression. Some single-strand RNAs can create a circular shape via the back splicing process and convert into a new type called circular RNA (circRNA). circRNAs are among the essential non-coding RNAs in the cell that involve multiple disorders. One of the critical functions of circRNAs is to regulate the expression of other genes through sponging micro RNAs (miRNAs) in diseases. This mechanism, known as the competing endogenous RNA (ceRNA) hypothesis, and additional information obtained from biological datasets can be used by computational approaches to predict novel associations between disease and circRNAs. RESULTS: We applied multiple classifiers to validate the extracted features from the heterogeneous network and selected the most appropriate one based on some evaluation criteria. Then, the XGBoost is utilized in our pipeline to generate a novel approach, called CircWalk, to predict CircRNA-Disease associations. Our results demonstrate that CircWalk has reasonable accuracy and AUC compared with other state-of-the-art algorithms. We also use CircWalk to predict novel circRNAs associated with lung, gastric, and colorectal cancers as a case study. The results show that our approach can accurately detect novel circRNAs related to these diseases. CONCLUSIONS: Considering the ceRNA hypothesis, we integrate multiple resources to construct a heterogeneous network from circRNAs, mRNAs, miRNAs, and diseases. Next, the DeepWalk algorithm is applied to the network to extract feature vectors for circRNAs and diseases. The extracted features are used to learn a classifier and generate a model to predict novel CircRNA-Disease associations. Our approach uses the concept of the ceRNA hypothesis and the miRNA sponge effect of circRNAs to predict their associations with diseases. Our results show that this outlook could help identify CircRNA-Disease associations more accurately.


Assuntos
MicroRNAs , RNA Circular , Perfilação da Expressão Gênica/métodos , Ontologia Genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética
2.
BMC Bioinformatics ; 23(1): 298, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879674

RESUMO

BACKGROUND: The advent of high throughput sequencing has enabled researchers to systematically evaluate the genetic variations in cancer, identifying many cancer-associated genes. Although cancers in the same tissue are widely categorized in the same group, they demonstrate many differences concerning their mutational profiles. Hence, there is no definitive treatment for most cancer types. This reveals the importance of developing new pipelines to identify cancer-associated genes accurately and re-classify patients with similar mutational profiles. Classification of cancer patients with similar mutational profiles may help discover subtypes of cancer patients who might benefit from specific treatment types. RESULTS: In this study, we propose a new machine learning pipeline to identify protein-coding genes mutated in many samples to identify cancer subtypes. We apply our pipeline to 12,270 samples collected from the international cancer genome consortium, covering 19 cancer types. As a result, we identify 17 different cancer subtypes. Comprehensive phenotypic and genotypic analysis indicates distinguishable properties, including unique cancer-related signaling pathways. CONCLUSIONS: This new subtyping approach offers a novel opportunity for cancer drug development based on the mutational profile of patients. Additionally, we analyze the mutational signatures for samples in each subtype, which provides important insight into their active molecular mechanisms. Some of the pathways we identified in most subtypes, including the cell cycle and the Axon guidance pathways, are frequently observed in cancer disease. Interestingly, we also identified several mutated genes and different rates of mutation in multiple cancer subtypes. In addition, our study on "gene-motif" suggests the importance of considering both the context of the mutations and mutational processes in identifying cancer-associated genes. The source codes for our proposed clustering pipeline and analysis are publicly available at: https://github.com/bcb-sut/Pan-Cancer .


Assuntos
Neoplasias , Mutação Puntual , Análise por Conglomerados , Genoma Humano , Humanos , Mutação , Neoplasias/genética
3.
Commun Biol ; 5(1): 556, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672401

RESUMO

Non-coding RNAs (ncRNAs) form a large portion of the mammalian genome. However, their biological functions are poorly characterized in cancers. In this study, using a newly developed tool, SomaGene, we analyze de novo somatic point mutations from the International Cancer Genome Consortium (ICGC) whole-genome sequencing data of 1,855 breast cancer samples. We identify 1030 candidates of ncRNAs that are significantly and explicitly mutated in breast cancer samples. By integrating data from the ENCODE regulatory features and FANTOM5 expression atlas, we show that the candidate ncRNAs significantly enrich active chromatin histone marks (1.9 times), CTCF binding sites (2.45 times), DNase accessibility (1.76 times), HMM predicted enhancers (2.26 times) and eQTL polymorphisms (1.77 times). Importantly, we show that the 1030 ncRNAs contain a much higher level (3.64 times) of breast cancer-associated genome-wide association (GWAS) single nucleotide polymorphisms (SNPs) than genome-wide expectation. Such enrichment has not been seen with GWAS SNPs from other cancers. Using breast cell line related Hi-C data, we then show that 82% of our candidate ncRNAs (1.9 times) significantly interact with the promoter of protein-coding genes, including previously known cancer-associated genes, suggesting the critical role of candidate ncRNA genes in the activation of essential regulators of development and differentiation in breast cancer. We provide an extensive web-based resource ( https://www.ihealthe.unsw.edu.au/research ) to communicate our results with the research community. Our list of breast cancer-specific ncRNA genes has the potential to provide a better understanding of the underlying genetic causes of breast cancer. Lastly, the tool developed in this study can be used to analyze somatic mutations in all cancers.


Assuntos
Neoplasias da Mama , Estudo de Associação Genômica Ampla , Neoplasias da Mama/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Mutação Puntual , Polimorfismo de Nucleotídeo Único , RNA não Traduzido/genética
4.
BMC Bioinformatics ; 23(1): 138, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439935

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Recent studies have observed causative mutations in susceptible genes related to colorectal cancer in 10 to 15% of the patients. This highlights the importance of identifying mutations for early detection of this cancer for more effective treatments among high risk individuals. Mutation is considered as the key point in cancer research. Many studies have performed cancer subtyping based on the type of frequently mutated genes, or the proportion of mutational processes. However, to the best of our knowledge, combination of these features has never been used together for this task. This highlights the potential to introduce better and more inclusive subtype classification approaches using wider range of related features to enable biomarker discovery and thus inform drug development for CRC. RESULTS: In this study, we develop a new pipeline based on a novel concept called 'gene-motif', which merges mutated gene information with tri-nucleotide motif of mutated sites, for colorectal cancer subtype identification. We apply our pipeline to the International Cancer Genome Consortium (ICGC) CRC samples and identify, for the first time, 3131 gene-motif combinations that are significantly mutated in 536 ICGC colorectal cancer samples. Using these features, we identify seven CRC subtypes with distinguishable phenotypes and biomarkers, including unique cancer related signaling pathways, in which for most of them targeted treatment options are currently available. Interestingly, we also identify several genes that are mutated in multiple subtypes but with unique sequence contexts. CONCLUSION: Our results highlight the importance of considering both the mutation type and mutated genes in identification of cancer subtypes and cancer biomarkers. The new CRC subtypes presented in this study demonstrates distinguished phenotypic properties which can be effectively used to develop new treatments. By knowing the genes and phenotypes associated with the subtypes, a personalized treatment plan can be developed that considers the specific phenotypes associated with their genomic lesion.


Assuntos
Neoplasias Colorretais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genômica , Humanos , Mutação , Fenótipo
5.
Cancers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34503185

RESUMO

It is now known that at least 10% of samples with pancreatic cancers (PC) contain a causative mutation in the known susceptibility genes, suggesting the importance of identifying cancer-associated genes that carry the causative mutations in high-risk individuals for early detection of PC. In this study, we develop a statistical pipeline using a new concept, called gene-motif, that utilizes both mutated genes and mutational processes to identify 4211 3-nucleotide PC-associated gene-motifs within 203 significantly mutated genes in PC. Using these gene-motifs as distinguishable features for pancreatic cancer subtyping results in identifying five PC subtypes with distinguishable phenotypes and genotypes. Our comprehensive biological characterization reveals that these PC subtypes are associated with different molecular mechanisms including unique cancer related signaling pathways, in which for most of the subtypes targeted treatment options are currently available. Some of the pathways we identified in all five PC subtypes, including cell cycle and the Axon guidance pathway are frequently seen and mutated in cancer. We also identified Protein kinase C, EGFR (epidermal growth factor receptor) signaling pathway and P53 signaling pathways as potential targets for treatment of the PC subtypes. Altogether, our results uncover the importance of considering both the mutation type and mutated genes in the identification of cancer subtypes and biomarkers.

6.
Sci Rep ; 10(1): 1286, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992766

RESUMO

Analysis of cancer mutational signatures have been instrumental in identification of responsible endogenous and exogenous molecular processes in cancer. The quantitative approach used to deconvolute mutational signatures is becoming an integral part of cancer research. Therefore, development of a stand-alone tool with a user-friendly interface for analysis of cancer mutational signatures is necessary. In this manuscript we introduce CANCERSIGN, which enables users to identify 3-mer and 5-mer mutational signatures within whole genome, whole exome or pooled samples. Additionally, this tool enables users to perform clustering on tumor samples based on the proportion of mutational signatures in each sample. Using CANCERSIGN, we analysed all the whole genome somatic mutation datasets profiled by the International Cancer Genome Consortium (ICGC) and identified a number of novel signatures. By examining signatures found in exonic and non-exonic regions of the genome using WGS and comparing this to signatures found in WES data we observe that WGS can identify additional non-exonic signatures that are enriched in the non-coding regions of the genome while the deeper sequencing of WES may help identify weak signatures that are otherwise missed in shallower WGS data.


Assuntos
Bases de Dados de Ácidos Nucleicos , Exoma , Genoma Humano , Mutação , Neoplasias/genética , Software , Animais , Humanos
7.
BMC Bioinformatics ; 14 Suppl 13: S4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24266942

RESUMO

BACKGROUND: The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. RESULTS: Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. CONCLUSIONS: Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.


Assuntos
Algoritmos , Lógica Fuzzy , Perfilação da Expressão Gênica , Análise Serial de Proteínas/métodos , Máquina de Vetores de Suporte , Análise por Conglomerados , Neoplasias do Colo/classificação , Neoplasias do Colo/genética , Biologia Computacional , Árvores de Decisões , Expressão Gênica , Humanos , Leucemia/classificação , Leucemia/genética , Masculino , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA