Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain ; 165(1): 54-74, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366593

RESUMO

ABSTRACT: The persistence of inflammatory and neuropathic pain is poorly understood. We investigated a novel therapeutic paradigm by targeting gene networks that sustain or reverse persistent pain states. Our prior observations found that Sp1-like transcription factors drive the expression of TRPV1, a pain receptor, that is blocked in vitro by mithramycin A (MTM), an inhibitor of Sp1-like factors. Here, we investigate the ability of MTM to reverse in vivo models of inflammatory and chemotherapy-induced peripheral neuropathy (CIPN) pain and explore MTM's underlying mechanisms. Mithramycin reversed inflammatory heat hyperalgesia induced by complete Freund adjuvant and cisplatin-induced heat and mechanical hypersensitivity. In addition, MTM reversed both short-term and long-term (1 month) oxaliplatin-induced mechanical and cold hypersensitivity, without the rescue of intraepidermal nerve fiber loss. Mithramycin reversed oxaliplatin-induced cold hypersensitivity and oxaliplatin-induced TRPM8 overexpression in dorsal root ganglion (DRG). Evidence across multiple transcriptomic profiling approaches suggest that MTM reverses inflammatory and neuropathic pain through broad transcriptional and alternative splicing regulatory actions. Mithramycin-dependent changes in gene expression following oxaliplatin treatment were largely opposite to and rarely overlapped with changes in gene expression induced by oxaliplatin alone. Notably, RNAseq analysis revealed MTM rescue of oxaliplatin-induced dysregulation of mitochondrial electron transport chain genes that correlated with in vivo reversal of excess reactive oxygen species in DRG neurons. This finding suggests that the mechanism(s) driving persistent pain states such as CIPN are not fixed but are sustained by ongoing modifiable transcription-dependent processes.


Assuntos
Antineoplásicos , Neuralgia , Humanos , Plicamicina/efeitos adversos , Oxaliplatina/toxicidade , Antineoplásicos/uso terapêutico , Antineoplásicos/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Gânglios Espinais/metabolismo
2.
J Neuroinflammation ; 19(1): 118, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610647

RESUMO

BACKGROUND: The transient receptor potential vanilloid 1 (TRPV1) participates in thermosensation and inflammatory pain, but its immunomodulatory mechanisms remain enigmatic. N-Oleoyl dopamine (OLDA), an endovanilloid and endocannabinoid, is a TRPV1 agonist that is produced in the central nervous system and the peripheral nervous system. We studied the anti-inflammatory effects and TRPV1-dependent mechanisms of OLDA in models of inflammation and sepsis. METHODS: Mice were challenged intratracheally or intravenously with LPS, or intratracheally with S. aureus to induce pneumonia and sepsis, and then were treated intravenously with OLDA. Endpoints included plasma cytokines, leukocyte activation marker expression, mouse sepsis scores, lung histopathology, and bacterial counts. The role of TRPV1 in the effects of OLDA was determined using Trpv1-/- mice, and mice with TRPV1 knockdown pan-neuronally, in peripheral nervous system neurons, or in myeloid cells. Circulating monocytes/macrophages were depleted using clodronate to determine their role in the anti-inflammatory effects of OLDA in endotoxemic mice. Levels of exogenous OLDA, and of endovanilloids and endocannabinoids, at baseline and in endotoxemic mice, were determined by LC-MS/MS. RESULTS: OLDA administration caused an early anti-inflammatory response in endotoxemic and septic mice with high serum levels of IL-10 and decreased levels of pro-inflammatory cytokines. OLDA also reduced lung injury and improved mouse sepsis scores. Blood and lung bacterial counts were comparable between OLDA- and carrier-treated mice with S. aureus pneumonia. OLDA's effects were reversed in mice with pan-neuronal TRPV1 knockdown, but not with TRPV1 knockdown in peripheral nervous system neurons or myeloid cells. Depletion of monocytes/macrophages reversed the IL-10 upregulation by OLDA in endotoxemic mice. Brain and blood levels of endovanilloids and endocannabinoids were increased in endotoxemic mice. CONCLUSIONS: OLDA has strong anti-inflammatory actions in mice with endotoxemia or S. aureus pneumonia. Prior studies focused on the role of peripheral nervous system TRPV1 in modulating inflammation and pneumonia. Our results suggest that TRPV1-expressing central nervous system neurons also regulate inflammatory responses to endotoxemia and infection. Our study reveals a neuro-immune reflex that during acute inflammation is engaged proximally by OLDA acting on neuronal TRPV1, and through a multicellular network that requires circulating monocytes/macrophages, leads to the systemic production of IL-10.


Assuntos
Endotoxemia , Sepse , Animais , Sistema Nervoso Central/metabolismo , Cromatografia Líquida , Citocinas/metabolismo , Dopamina/metabolismo , Endocanabinoides , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Inflamação/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Sepse/tratamento farmacológico , Staphylococcus aureus , Canais de Cátion TRPV/metabolismo , Espectrometria de Massas em Tandem
3.
Regul Pept ; 109(1-3): 71-4, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12409217

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) has neurotrophic and neuroprotective effects against various cytotoxic agents in vitro, and ischemia in vivo. Anoxia tolerance is most highly developed in some species of turtles. Recently, we have demonstrated high levels of PACAP38 in the turtle brain, exceeding those in corresponding rat and human brain areas by 10- to 100-fold. The aim of the present study was to investigate with electrophysiological methods the protective effects of PACAP in anoxia-induced neuronal damage of turtle retinal horizontal cells. Adult turtles (Pseudemys scripta elegans) were used for the experiments. After decapitation, half of the isolated eyecup slices were placed into a non-oxygenated Ringer solution, the other half into 0.165 microM PACAP solution. Intracellular recordings were obtained from horizontal cells 18, 22, 42 and 46 h after removal of the eyes. The amplitudes of light responses with the exception of the 0-h measurement, were larger at all time-points in PACAP-incubated slices than in control retinal slices. After both 18 and 22 h, the response amplitudes of PACAP-treated cells exceeded those taken from control horizontal cells by 1.2-fold. At later times, this difference became larger than 2-fold. In summary, the present results provide evidence that PACAP has neuroprotective effects on the anoxic retinal cells in the turtle.


Assuntos
Hipóxia/fisiopatologia , Neuropeptídeos/farmacologia , Retina/efeitos dos fármacos , Retina/fisiopatologia , Tartarugas , Animais , Hipóxia/patologia , Técnicas In Vitro , Luz , Fármacos Neuroprotetores/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Retina/patologia , Retina/efeitos da radiação , Fatores de Tempo , Tartarugas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA