Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reprod Sci ; 31(5): 1363-1372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38151652

RESUMO

Knowledge of action of progesterone (P4) on the human preimplantation embryo is lacking. The objective of this study was to determine expression of a mitochondrial P4 receptor (PR-M) in the trophectoderm (TE) and the inner cell mass (ICM) of the human blastocyst and to determine P4-induced gene expression during growth from the cleavage to the blastocyst stage. Previously cryopreserved cleavage stage embryos were treated with P4 (10-6 M) or vehicle until blastocyst development. Cells from the TE and the ICM of dissected euploid embryos underwent RNA-seq analysis, while other embryos were used for analysis of nuclear PR (nPR) and PR-M expression.PR-M expression was confirmed in the TE, the ICM, and a human embryonic stem cell line (HESC). Conversely, nPR expression was absent in the TE and the ICM with low expression in the HESC line. RNA-seq analysis revealed P4 effects greater in the TE with 183 significant pathway changes compared to 27 in the ICM. The TE response included significant upregulation of genes associated with DNA replication, cell cycle phase transition and others, exemplified by a 7.6-fold increase in the cell proliferation gene, F-Box Associated Domain Containing. The majority of ICM pathways were downregulated including chromosome separation, centromere complex assembly and chromatin remodeling at centromere. This study confirms that human blastocysts express PR-M in both the TE and the ICM, but lack expression of nPR. P4-induced gene regulation differs greatly in the two cell fractions with the predominant effect of cell proliferation in the TE and not the ICM.


Assuntos
Massa Celular Interna do Blastocisto , Blastocisto , Regulação da Expressão Gênica no Desenvolvimento , Progesterona , Humanos , Progesterona/farmacologia , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos , Massa Celular Interna do Blastocisto/metabolismo , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Feminino , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos
2.
Reprod Sci ; 27(5): 1206-1214, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32046426

RESUMO

Mitochondrial activity is critical and correlates with embryo development. The identification of a novel human mitochondrial progesterone receptor (PR-M) that increases cellular respiration brings into question a role for progesterone in oocyte and preimplantation embryo development. Oocytes and embryos were generated from three Rhesus non-human primates (Macaca mulatta) undergoing in vitro fertilization. Immunohistochemical (IHC) staining for the progesterone receptor and mitochondria, RT-PCR with product sequencing for a mitochondrial progesterone receptor, and mitochondrial membrane determination with JC-1 staining were performed. IHC staining with selective antibodies to the progesterone receptor showed non-nuclear staining. Staining was absent in mouse control embryos. RT-PCR with product sequencing demonstrated PR-M transcript in Rhesus oocytes and embryos, which was absent in mouse embryos. Treatment of Rhesus oocytes and embryos with progesterone showed increased mitochondrial membrane potential, which was absent in mouse embryos. Our results support that progesterone increases mitochondrial membrane potential in oocytes and developing embryos. This is likely an in vivo mechanism to support preimplantation embryo development, and brings up the possibility of in vitro manipulation of culture media for optimization of growth.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Progesterona/farmacologia , Receptores de Progesterona/metabolismo , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Feminino , Macaca mulatta , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Gravidez
3.
Epigenetics ; 13(12): 1208-1221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521419

RESUMO

Little is known about the reproductive effects of paternal cannabis exposure. We evaluated associations between cannabis or tetrahydrocannabinol (THC) exposure and altered DNA methylation in sperm from humans and rats, respectively. DNA methylation, measured by reduced representation bisulfite sequencing, differed in the sperm of human users from non-users by at least 10% at 3,979 CpG sites. Pathway analyses indicated Hippo Signaling and Pathways in Cancer as enriched with altered genes (Bonferroni p < 0.02). These same two pathways were also enriched with genes having altered methylation in sperm from THC-exposed versus vehicle-exposed rats (p < 0.01). Data validity is supported by significant correlations between THC exposure levels in humans and methylation for 177 genes, and substantial overlap in THC target genes in rat sperm (this study) and genes previously reported as having altered methylation in the brain of rat offspring born to parents both exposed to THC during adolescence. In humans, cannabis use was also associated with significantly lower sperm concentration. Findings point to possible pre-conception paternal reproductive risks associated with cannabis use.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Metilação de DNA , Dronabinol/farmacologia , Abuso de Maconha/genética , Espermatozoides/efeitos dos fármacos , Adolescente , Adulto , Animais , Ilhas de CpG , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA