Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Biomed Phys Eng Express ; 10(2)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38113641

RESUMO

This comment highlights two methodological issues with the recent article by Velten et al [Biomed Phys Eng Express 2023;9:045004]: First, the approach taken in this work with a local effect model (LEM) in 2D leads to a significant overstimation of the number of radiation-induced lesions. This results in order of magnitude smaller predicted survival rates compared to the conventional LEM. Second, the dose without nanoparticles is used as the 'macroscopic dose' against which cell survival is plotted. However, for the considered gold concentrations, the average absorbed dose under secondary particle equilibrium is between 2 and 20 times higher with nanoparticles than without.


Assuntos
Nanopartículas Metálicas , Método de Monte Carlo , Sobrevivência Celular , Reprodutibilidade dos Testes , Ouro
3.
Radiat Environ Biophys ; 60(4): 559-578, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34427743

RESUMO

This work aims at elaborating the basic assumptions behind the "track-event theory" (TET) and its derivate "radiation action model based on nanodosimetry" (RAMN) by clearly distinguishing between effects of tracks at the cellular level and the induction of lesions in subcellular targets. It is demonstrated that the model assumptions of Poisson distribution and statistical independence of the frequency of single and clustered DNA lesions are dispensable for multi-event distributions because they follow from the Poisson distribution of the number of tracks affecting the considered target volume. It is also shown that making these assumptions for the single-event distributions of the number of lethal and sublethal lesions within a cell would lead to an essentially exponential dose dependence of survival for practically relevant values of the absorbed dose. Furthermore, it is elucidated that the model equation used for consideration of repair within the TET is based on the assumption that DNA lesions induced by different tracks are repaired independently. Consequently, the model equation is presumably inconsistent with the model assumptions and requires an additional model parameter. Furthermore, the methodology for deriving model parameters from nanodosimetric properties of particle track structure is critically assessed. Based on data from proton track simulations it is shown that the assumption of statistically independent targets leads to the prediction of negligible frequency of clustered DNA damage. An approach is outlined how track structure could be considered in determining the model parameters, and the implications for TET and RAMN are discussed.


Assuntos
Terapia com Prótons , Prótons , Sobrevivência Celular , DNA , Dano ao DNA , Método de Monte Carlo
4.
Nat Commun ; 11(1): 2194, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366861

RESUMO

Low-energy electron-induced reactions in hydrated molecular complexes are important in various fields ranging from the Earth's environment to radiobiological processes including radiation therapy. Nevertheless, our understanding of the reaction mechanisms in particular in the condensed phase and the role of water in aqueous environments is incomplete. Here we use small hydrogen-bonded pure and mixed dimers of the heterocyclic molecule tetrahydrofuran (THF) and water as models for biochemically relevant systems. For electron-impact-induced ionization of these dimers, a molecular ring-break mechanism is observed, which is absent for the THF monomer. Employing coincident fragment ion mass and electron momentum spectroscopy, and theoretical calculations, we find that ionization of the outermost THF orbital initiates significant rearrangement of the dimer structure increasing the internal energy and leading to THF ring-break. These results demonstrate that the local environment in form of hydrogen-bonded molecules can considerably affect the stability of molecular covalent bonds.

5.
Phys Med Biol ; 65(21): 21RM02, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32380492

RESUMO

This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z = 22, to Bismuth, Z = 83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation dose enhancers, hyperthermia inducers, drug delivery vehicles, vaccine adjuvants, photosensitizers, enhancers of immunotherapy) and theranostic (combining both diagnostic and therapeutic), are being fabricated and evaluated. This roadmap covers contributions from experts in these topics summarizing their view of the current status and challenges, as well as expected advancements in technology to address these challenges.


Assuntos
Nanopartículas Metálicas/uso terapêutico , Nanomedicina Teranóstica/métodos , Humanos , Hipertermia Induzida
7.
Radiat Res ; 191(6): 566-584, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021733

RESUMO

Advances in accelerator technology, which have enabled conforming radiotherapy with charged hadronic species, have brought benefits as well as potential new risks to patients. To better understand the effects of ionizing radiation on tumor and surrounding tissue, it is important to investigate and quantify the relationship between energy deposition at the nanometric scale and the initial biological events. Monte Carlo track structure simulation codes provide a powerful tool for investigating this relationship; however, their success and reliability are dependent on their improvement and development accordingly to the dedicated biological data to which they are challenged. For this aim, a microbeam facility that allows for fluence control, down to one ion per cell nucleus, was used to evaluate relative frequencies of DNA damage after interaction between the incoming ion and DNA according to radiation quality. Primary human cells were exposed to alpha particles of three different energies with respective linear energy transfers (LETs) of approximately 36, 85 or 170 keV·µm-1 at the cells' center position, or to protons (19 keV·µm-1). Statistical evaluation of nuclear foci formation (53BP1/γ-H2AX), observed using immunofluorescence and related to a particle traversal, was undertaken in a large population of cell nuclei. The biological results were adjusted to consider the factors that drive the experimental uncertainties, then challenged with results using Geant4-DNA code modeling of the ionizing particle interactions on a virtual phantom of the cell nucleus with the same mean geometry and DNA density as the cells used in our experiments. Both results showed an increase of relative frequencies of foci (or simulated DNA damage) in cell nuclei as a function of increasing LET of the traversing particles, reaching a quasi-plateau when the LET exceeded 80-90 keV·µm-1. For the LET of an alpha particle ranging from 80-90 to 170 keV·µm-1, 10-30% of the particle hits did not lead to DNA damage inducing 53BP1 or γ-H2AX foci formation.


Assuntos
Dano ao DNA , Transferência Linear de Energia/genética , Método de Monte Carlo , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Modelos Biológicos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
8.
Radiat Prot Dosimetry ; 183(1-2): 126-130, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535025

RESUMO

When early radiation damage to biological systems is studied based on the formation of foci at the location of DNA double-strand breaks, the foci observed in irradiated cells either may be induced by ionizing radiation (IR) interactions or they may be due to other causes that lead to observation of foci also in unirradiated cells. Generally, to take account of the latter, additional samples are taken where the exposure to IR is skipped in the protocol. The data analysis relies on statistical independence of the frequency distributions of background and radiation-induced foci. In microscopy, however, the observed spatial patterns of foci are 2D projections of the spatial distributions of foci in the observed cell nuclei. This may lead to missing foci when scoring their number, particularly if projections of foci overlap or coincide. This paper investigates to what extent the statistical independence of the frequency distribution of the number of foci coming from IR interaction or other causes is compromised by foci overlapping.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Neoplasias Mamárias Experimentais/radioterapia , Modelos Estatísticos , Células Tumorais Cultivadas/efeitos da radiação , Animais , Imuno-Histoquímica , Camundongos , Probabilidade , Radiação Ionizante
9.
Radiat Prot Dosimetry ; 183(1-2): 131-135, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561691

RESUMO

In recent years, several approaches have been proposed to provide an understanding of the enhanced relative biological effectiveness of ion beams based on multi-scale models of their radiation effects. Among these, the BioQuaRT project was the only one which focused on developing metrology for a multi-scale characterization of particle track structure. The progress made within the BioQuaRT project has motivated the formation of a department 'Radiation Effects' at PTB dedicated to metrological research on ionizing radiation effects. This paper gives an overview of the department's present research directions and shortly discusses ideas for the future development of metrology related to biological effects of ion beams that are based on a stakeholder consultation.


Assuntos
Fenômenos Fisiológicos Celulares/efeitos da radiação , Dano ao DNA/efeitos da radiação , Aceleradores de Partículas/instrumentação , Radiobiologia/instrumentação , Relação Dose-Resposta à Radiação , Alemanha , Transferência Linear de Energia , Radiação Ionizante , Eficiência Biológica Relativa
10.
Radiat Res ; 189(6): 597-604, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29624483

RESUMO

There is a continued need for further clarification of various aspects of radiation-induced chromosomal aberration, including its correlation with radiation track structure. As part of the EMRP joint research project, Biologically Weighted Quantities in Radiotherapy (BioQuaRT), we performed experimental and theoretical analyses on chromosomal aberrations in Chinese hamster ovary cells (CHO-K1) exposed to α particles with final energies of 5.5 and 17.8 MeV (absorbed doses: ∼2.3 Gy and ∼1.9 Gy, respectively), which were generated by the microbeam at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. In line with the differences in linear energy transfer (approximately 85 keV/µm for 5.5 MeV and 36 keV/µm for 17.8 MeV α particles), the 5.5 MeV α particles were more effective than the 17.8 MeV α particles, both in terms of the percentage of aberrant cells (57% vs. 33%) and aberration frequency. The yield of total aberrations increased by a factor of ∼2, although the increase in dicentrics plus centric rings was less pronounced than in acentric fragments. The experimental data were compared with Monte Carlo simulations based on the BIophysical ANalysis of Cell death and chromosomal Aberrations model (BIANCA). This comparison allowed interpretation of the results in terms of critical DNA damage [cluster lesions (CLs)]. More specifically, the higher aberration yields observed for the 5.5 MeV α particles were explained by taking into account that, although the nucleus was traversed by fewer particles (nominally, 11 vs. 25), each particle was much more effective (by a factor of ∼3) at inducing CLs. This led to an increased yield of CLs per cell (by a factor of ∼1.4), consistent with the increased yield of total aberrations observed in the experiments.


Assuntos
Partículas alfa/efeitos adversos , Aberrações Cromossômicas/efeitos da radiação , Modelos Biológicos , Animais , Células CHO , Cricetinae , Cricetulus , Humanos
12.
J Radiol Prot ; 33(3): 589-603, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23803528

RESUMO

The fourth workshop of the Multidisciplinary European Low Dose Initiative (MELODI) was organised by STUK-Radiation and Nuclear Safety Authority of Finland. It took place from 12 to 14 September 2012 in Helsinki, Finland. The meeting was attended by 179 scientists and professionals engaged in radiation research and radiation protection. We summarise the major scientific findings of the workshop and the recommendations for updating the MELODI Strategic Research Agenda and Road Map for future low dose research activities.


Assuntos
Doses de Radiação , Lesões por Radiação/epidemiologia , Proteção Radiológica/normas , Relação Dose-Resposta à Radiação , Europa (Continente)/epidemiologia , Humanos , Lesões por Radiação/genética , Proteção Radiológica/métodos , Projetos de Pesquisa/normas , Medição de Risco
13.
Int J Radiat Biol ; 88(1-2): 183-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22098383

RESUMO

PURPOSE: With the advent of magnetic resonance imaging (MRI)-guided radiation therapy it is becoming increasingly important to consider the potential influence of a magnetic field on ionising radiation. This paper aims to study the effect of a magnetic field on the track structure of radiation to determine if the biological effectiveness may be altered. METHODS: Using the Geant4-DNA (GEometry ANd Tracking 4) Monte Carlo simulation toolkit, nanodosimetric track structure parameters were calculated for electrons, protons and alpha particles moving in transverse magnetic fields up to 10 Tesla. Applying the model proposed by Garty et al., the track structure parameters were used to derive the probability of producing a double-strand break (DSB). RESULTS: For simulated primary particles of electrons (200 eV-10 keV), protons (300 keV-30 MeV) and alpha particles (1-9 MeV) the application of a magnetic field was shown to have no significant effect (within statistical uncertainty limits) on the parameters characterizing radiation track structure or the probability of producing a DSB. CONCLUSIONS: The null result found here implies that if the presence of a magnetic field were to induce a change in the biological effectiveness of radiation, the effect would likely not be due to a change in the track structure of the radiation.


Assuntos
DNA , Campos Magnéticos , Nanotecnologia/métodos , Partículas alfa , DNA/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Elétrons , Probabilidade , Prótons , Radiometria , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA