Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrition ; 78: 110791, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32682271

RESUMO

OBJECTIVES: To examine the effects of a selective peroxisome proliferator-activated receptor (PPAR-α) agonist treatment on interscapular brown adipose tissue (iBAT) whitening, focusing on thermogenic, lipolysis, and lipid oxidation markers in mice fed a high-fat or high-fructose diet. METHODS: Fifty animals were randomly assigned to receive a control diet (C, 10% lipids as energy), high-fat diet (HF, 50% lipids as energy), or high-fructose diet (HFRU, 50% fructose as energy) for 12 wk. Each group was redivided to begin the 5-wk treatment, totaling five experimental groups: C, HF, HF-a, HFRU, and HFRU-a. The drug was mixed with diet at the dose of 3.5 mg/kg body mass. RESULTS: HF group was the heaviest group, and the HF and HFRU groups had glucose intolerance. PPAR-α activation alleviated these metabolic constraints. HF and HFRU groups had negative vascular endothelial growth factor A (VEGF-A) immunostaining, but only the HF group had a pattern of lipid droplet accumulation that resembled the white adipose tissue, characterizing the whitening phenomenon. Whitening in the HF group was accompanied by decreased expression of genes related to thermogenesis, ß-oxidation, and antiinflammatory effects. All of them were augmented by the PPAR-α activation in HF-a and HFRU-a groups, countering the whitening in the HF-a group. Treated groups also had a lower respiratory exchange ratio than untreated groups, suggesting that lipids were used as fuel for the enhanced thermogenesis. CONCLUSIONS: The PPAR-α agonist countered iBAT whitening by inducing the thermogenic pathway and reducing the lipid droplet size, in addition to enhanced VEGF-A expression, adrenergic stimulus, and lipolysis in HF-fed mice.


Assuntos
Tecido Adiposo Marrom , PPAR alfa , Tecido Adiposo , Tecido Adiposo Branco , Animais , Dieta Hiperlipídica/efeitos adversos , Frutose/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/genética , Termogênese , Fator A de Crescimento do Endotélio Vascular
2.
Biochimie ; 140: 106-116, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28711683

RESUMO

Non-alcoholic fatty liver disease (NAFLD) presents with growing prevalence worldwide, though its pharmacological treatment remains to be established. This study aimed to evaluate the effects of a PPAR-alpha agonist on liver tissue structure, ultrastructure, and metabolism, focusing on gene and protein expression of de novo lipogenesis and gluconeogenesis pathways, in diet-induced obese mice. Male C57BL/6 mice (three months old) received a control diet (C, 10% of lipids, n = 10) or a high-fat diet (HFD, 50% of lipids, n = 10) for ten weeks. These groups were subdivided to receive the treatment (n = 5 per group): C, C-alpha (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the control diet), HFD and HFD-alpha group (PPAR-alpha agonist, 2.5 mg/kg/day mixed in the HFD). The effects were compared with biometrical, biochemical, molecular biology and transmission electron microscopy (TEM) analyses. HFD showed greater body mass (BM) and insulinemia than C, both of which were tackled by the treatment in the HFD-alpha group. Increased hepatic protein expression of glucose-6-phosphatase, CHREBP and gene expression of PEPCK in HFD points to increased gluconeogenesis. Treatment rescued these parameters in the HFD-alpha group, eliciting a reduced hepatic glucose output, confirmed by the smaller GLUT2 expression in HFD-alpha than in HFD. Conversely, favored de novo lipogenesis was found in the HFD group by the increased expression of PPAR-gamma, and its target gene SREBP-1, FAS and GK when compared to C. The treatment yielded a marked reduction in the expression of all lipogenic factors. TEM analyses showed a greater numerical density of mitochondria per area of tissue in treated than in untreated groups, suggesting an increase in beta-oxidation and the consequent NAFLD control. PPAR-alpha activation reduced BM and treated insulin resistance (IR) and NAFLD by increasing the number of mitochondria and reducing hepatic gluconeogenesis and de novo lipogenesis protein and gene expressions in a murine obesity model.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Obesidade/tratamento farmacológico , PPAR alfa/agonistas , Pirimidinas/farmacologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Gorduras na Dieta/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose-6-Fosfatase/biossíntese , Resistência à Insulina , Lipogênese/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Nucleares/biossíntese , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , PPAR alfa/metabolismo , PPAR gama/biossíntese , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Fatores de Transcrição/biossíntese , Receptor fas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA