Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(9): e35483, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39229802

RESUMO

Although deterioration of silicone maxillofacial prostheses is severely accentuated in smoking patients, the phenomenon has not been systematically studied. To address a gap in the literature concerning the stability of maxillofacial prostheses during service, in this contribution, the effect of cigarette smoke on the aspect and physical properties of M511 silicone elastomer was evaluated. The aspect, surface, and overall properties of the silicone material, pigmented or not, were followed by AFM, color measurements, FTIR, water contact angle measurements, TGA-DTG and DSC, hardness and compression stress-strain measurements. The types of the contaminants adsorbed were assessed by XRF, ESI-MS, MALDI-MS, and NMR spectral analyses. Important modifications in color, contact angle, surface roughness, local mechanical properties, and thermal properties were found in the silicone material for maxillofacial prostheses after exposure to cigarettes smoke. The presence of lead, nicotine, and several other organic compounds adsorbed into the silicone material was emphasized. Slight decrease in hardness and increase in Young's modulus was found. The combined data show important impact of cigarette smoke on the silicone physical properties and could indicate chemical transformations by secondary cross-linking. To our knowledge, this is the first study making use of complementary physical methods to assess the effect of cigarette smoke on the aspect and integrity of silicone materials for maxillofacial prostheses.


Assuntos
Teste de Materiais , Prótese Maxilofacial , Fumaça , Humanos , Elastômeros de Silicone/química , Nicotiana/química , Cor
2.
Materials (Basel) ; 17(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39203267

RESUMO

Although it is known (from the observations of medical professionals) that cigarette smoke negatively affects maxillofacial prostheses, especially through staining/discoloration, systematic research in this regard is limited. Herein, the color modifications of M511 maxillofacial silicone, unpigmented and pigmented with red or skin tone pigments, covered with mattifiers, or with makeup and mattifiers, and directly exposed to cigarette smoke, were investigated by spectrophotometric measurements in the CIELab and RGB color systems. The changes in color parameters are comparatively discussed, showing that the base silicone material without pigmentation and coating undergoes the most significant modifications. Visible and clinically unacceptable changes occurred after direct exposure to only 20 cigarettes. By coating and application of makeup, the material is more resistant to color changes, which suggests that surface treatments provide increased protection to adsorption of the smoke components. The dynamic water vapor sorption (DVS) measurements indicate a decrease of the sorption capacity in pigmented versus unpigmented elastomers, in line with the changes in color parameters.

3.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998378

RESUMO

The biomedical applications of silicones are countless due to their outstanding properties. In dentistry, silicone for maxillofacial and plastic surgery has become indispensable, from both physiological and aesthetic points of view. In this mini-review, silicone materials for dentistry and facial prostheses are discussed, focusing on their properties and alterations when exposed for long periods to different environments. A significant number of studies reported in the literature have been conducted in vitro, mimicking some of the main degradative factors which have been identified as triggers for discoloration and deterioration of the mechanical properties. Among these, in artificial aging and accelerated natural aging studies, UV radiation is considered the most important. Other weathering factors, biological contamination, and disinfection agents may have dramatic effects as well. Several general properties of silicones are described at the beginning, with a focus on biocompatibility, cross-linking mechanisms, and applications in dentistry and maxillofacial prosthetics. We discuss the ongoing cross-linking and/or possible exudation after manufacturing, which also affects the stability of the prosthesis over time, and possibly the patient. Next, the main environmental factors that affect the prostheses in service are presented, including the role of cigarettes smoke, which has been discussed very little so far. A few aspects, such as biofilm formation, its negative effects, and proposed solutions to overcome this phenomenon regarding silicones, are also described. We conclude by proposing a set of topics for future research and development based on the gaps that have been identified in the literature. Although silicones are probably irreplaceable in maxillofacial prosthetics, improvements in terms of base materials, additives, surface treatments, and maintenance are possible and necessary for long-lasting and safer prostheses.

4.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683677

RESUMO

Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption-desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustained release trend. The in vitro cytotoxicity was evaluated on NDHF, MeWo and HeLa cell lines by CellTiter-Glo assay, revealing strong cytotoxic effects in all of the loaded silica at low equivalent Dox concentration and selectivity for cancer cells. Atypical applications of each MSN as intravaginal, topical or oral Dox administration route could be proposed.

5.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443480

RESUMO

Within this study, new materials were synthesized and characterized based on polysiloxane modified with different ratios of N-acetyl-l-cysteine (NAC) and crosslinked via UV-assisted thiol-ene addition, in order to obtain efficient membranes able to resist bacterial adherence and biofilm formation. These membranes were subjected to in vitro testing for microbial adherence against S. pneumoniae using standardized tests. WISTAR rats were implanted for 4 weeks with crosslinked siloxane samples without and with NAC. A set of physical characterization methods was employed to assess the chemical structure and morphological aspects of the new synthetized materials before and after contact with the microbiological medium.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Implantes Cocleares/microbiologia , Otite/tratamento farmacológico , Polímeros/química , Siloxanas/química , Acetilcisteína/química , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Implantes Cocleares/efeitos adversos , Polímeros/farmacologia , Polímeros/uso terapêutico , Ratos Wistar , Siloxanas/farmacologia , Siloxanas/uso terapêutico , Streptococcus pneumoniae/efeitos dos fármacos , Compostos de Sulfidrila/química , Propriedades de Superfície
6.
Beilstein J Nanotechnol ; 7: 2074-2087, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144555

RESUMO

Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), µ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA