Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 315: 32-41, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30711647

RESUMO

Approximately 10 million new cases of traumatic brain injury (TBI) are reported each year worldwide with many of these injuries resulting in higher order cognitive impairments. Galantamine (GAL), an acetylcholine esterase inhibitor (AChEI) and positive allosteric modulator of nicotinic acetylcholine receptors (nAChRs), has been reported to ameliorate cognitive deficits after clinical TBI. Previously, we demonstrated that controlled cortical impact (CCI) injury to rats resulted in significant executive function impairments as measured by the attentional set-shifting test (AST), a complex cognitive task analogous to the Wisconsin Card Sorting Test (WCST). We hypothesized that chronic administration of GAL would normalize performance on the AST post-TBI. Isoflurane-anesthetized adult male rats were subjected to moderate CCI (2.8 mm tissue deformation at 4 m/s) or sham injury. Rats were then randomized into one of three treatment groups (i.e., 1 mg/kg GAL, 2 mg/kg GAL, or 1 mL/kg saline vehicle; VEH) or their respective sham controls. GAL or VEH was administered intraperitoneally daily commencing 24 hours post-surgery and until AST testing at 4 weeks post-injury. The AST data revealed significant impairments in the first reversal stage after TBI, seen as increased trials to reach criterion and elevated total errors (p < 0.05). These behavioral flexibility deficits were equally normalized by the administration of both doses of GAL (p < 0.05). Additionally, the higher dose of GAL (2 mg/kg) also significantly reduced cortical lesion volume compared to TBI + VEH controls (p < 0.05). In summary, daily GAL administration provides an efficacious treatment for cognitive deficits and histological recovery after experimental brain trauma. Clinically, these findings are promising considering robust results were attained using a pharmacotherapy already used in the clinic to treat mild dementia.


Assuntos
Atenção/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/psicologia , Galantamina/uso terapêutico , Nootrópicos/uso terapêutico , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/psicologia , Relação Dose-Resposta a Droga , Função Executiva/efeitos dos fármacos , Galantamina/administração & dosagem , Injeções Intraperitoneais , Masculino , Nootrópicos/administração & dosagem , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
2.
Exp Neurol ; 294: 12-18, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28457905

RESUMO

The typical environmental enrichment (EE) paradigm, which consists of continuous exposure after experimental traumatic brain injury (TBI), promotes behavioral and histological benefits. However, rehabilitation is often abbreviated in the clinic and administered in multiple daily sessions. While recent studies have demonstrated that a once daily 6-hr bout of EE confers benefits comparable to continuous EE, breaking the therapy into two shorter sessions may increase novelty and ultimately enhance recovery. Hence, the aim of the study was to test the hypothesis that functional and histological outcomes will be significantly improved by daily preclinical neurorehabilitation consisting of two 3-hr periods of EE vs. a single 6-hr session. Anesthetized adult male rats received a controlled cortical impact of moderate-to-severe injury (2.8mm tissue deformation at 4m/s) or sham surgery and were then randomly assigned to groups receiving standard (STD) housing, a single 6-hr session of EE, or two 3-hr sessions of EE daily for 3weeks. Motor function (beam-balance/traversal) and acquisition of spatial learning/memory retention (Morris water maze) were assessed on post-operative days 1-5 and 14-19, respectively. Cortical lesion volume was quantified on day 21. Both EE conditions improved motor function and acquisition of spatial learning, and reduced cortical lesion volume relative to STD housing (p<0.05), but did not differ from one another in any endpoint (p>0.05). The findings replicate previous work showing that 6-hr of EE daily is sufficient to confer behavioral and histological benefits after TBI and extend the findings by demonstrating that the benefits are comparable regardless of how the 6-hrs of EE are accrued. The relevance of the finding is that it can be extrapolated to the clinic and may benefit patients who cannot endure a single extended period of neurorehabilitation.


Assuntos
Lesões Encefálicas Traumáticas/reabilitação , Meio Ambiente , Análise de Variância , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Masculino , Exame Neurológico , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Retenção Psicológica/fisiologia , Aprendizagem Espacial/fisiologia , Fatores de Tempo
3.
J Neurotrauma ; 34(8): 1610-1622, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27806662

RESUMO

Environmental enrichment (EE) enhances cognition after traumatic brain injury (TBI). Galantamine (GAL) is an acetylcholinesterase inhibitor that also may promote benefits. Hence, the aims of this study were to assess the efficacy of GAL alone (standard [STD] housing) and in combination with EE in adult male rats after TBI. The hypothesis was that both therapies would confer motor, cognitive, and histological benefits when provided singly, but that their combination would be more efficacious. Anesthetized rats received a controlled cortical impact or sham injury, then were randomly assigned to receive GAL (1, 2, or 3 mg/kg; intraperitoneally [i.p.]) or saline vehicle (VEH; 1 mL/kg; i.p.) beginning 24 h after surgery and once daily for 21 days (experiment 1). Motor (beam-balance/walk) and cognitive (Morris water maze [MWM]) assessments were conducted on post-operative Days 1-5 and 14-19, respectively. Cortical lesion volumes were quantified on Day 21. Sham controls were better versus all TBI groups. No differences in motor function or lesion volumes were observed among the TBI groups (p > 0.05). In contrast, GAL (2 mg/kg) enhanced MWM performance versus VEH and GAL (1 and 3 mg/kg; p < 0.05). In experiment 2, GAL (2 mg/kg) or VEH was combined with EE and the data were compared with the STD-housed groups from experiment 1. EE alone enhanced motor performance over the VEH-treated and GAL-treated (2 mg/kg) STD-housed groups (p < 0.05). Moreover, both EE groups (VEH or GAL) facilitated spatial learning and reduced lesion size versus STD + VEH controls (p < 0.05). No additional benefits were observed with the combination paradigm, which does not support the hypothesis. Overall, the data demonstrate that EE and once daily GAL (2 mg/kg) promote cognitive recovery after TBI. Importantly, the combined therapies did not negatively affect outcome and thus this therapeutic protocol may have clinical utility.


Assuntos
Lesões Encefálicas Traumáticas , Inibidores da Colinesterase/farmacologia , Disfunção Cognitiva , Galantamina/farmacologia , Aprendizagem em Labirinto/fisiologia , Reabilitação Neurológica/métodos , Desempenho Psicomotor/fisiologia , Animais , Comportamento Animal/fisiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/terapia , Inibidores da Colinesterase/administração & dosagem , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/reabilitação , Terapia Combinada , Modelos Animais de Doenças , Meio Ambiente , Galantamina/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley
4.
J Neurotrauma ; 34(2): 451-458, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975872

RESUMO

Environmental enrichment (EE) confers significant benefits after experimental traumatic brain injury (TBI). In contrast, the antipsychotic drug (APD) haloperidol (HAL) exerts deleterious effects on neurobehavioral and cognitive recovery. Neurorehabilitation and management of agitation, however, are integral components of the treatment strategy for patients with TBI. Hence, the goal of this study was to determine how the two therapeutic approaches interact and influence motor and cognitive recovery. Anesthetized adult male rats received a controlled cortical impact (2.8 mm tissue deformation at 4 m/sec) or sham injury and then were provided HAL (0.5 mg/kg; intraperitoneally [IP]) or vehicle (VEH; 1 mL/kg; IP) commencing 24 h after surgery and once daily for 19 days while housed in EE or standard (STD) conditions. Beam balance/walk and Morris water maze performance were assessed on post-injury days 1-5 and 14-19, respectively, followed immediately by quantification of cortical lesion volumes. The data revealed both expected and unexpected findings. It was not surprising that the TBI groups receiving EE performed significantly better than those in STD housing and that the TBI + STD + HAL group performed worse than the TBI + STD + VEH group (p < 0.05). What was surprising was that the therapeutic effects of EE were greatly reduced by concomitant administration of HAL. No differences in cortical lesion volumes were observed among the groups (p > 0.05). The potential clinical implications of these findings suggest that administering HAL to patients undergoing neurorehabilitation may be a double-edged sword because agitation must be controlled before rehabilitation can be safely initiated and executed, but its use may compromise therapeutic efficacy.


Assuntos
Antipsicóticos/administração & dosagem , Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/terapia , Meio Ambiente , Haloperidol/administração & dosagem , Aprendizagem em Labirinto/efeitos dos fármacos , Animais , Antipsicóticos/toxicidade , Cognição/efeitos dos fármacos , Cognição/fisiologia , Terapia Combinada/métodos , Haloperidol/toxicidade , Masculino , Aprendizagem em Labirinto/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley
5.
Exp Neurol ; 286: 61-68, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27693618

RESUMO

Environmental enrichment (EE) promotes behavioral recovery after experimental traumatic brain injury (TBI). However, the chronic rehabilitation provided in the laboratory is not analogous to the clinic where physiotherapy is typically limited. Moreover, females make up approximately 40% of the clinical TBI population, yet they are seldom studied in brain trauma. Hence, the goal of this study was to test the hypothesis that abbreviated EE would confer neurobehavioral, cognitive, and histological benefits in brain injured female rats. Anesthetized rats received a cortical impact of moderate-to-severe injury (2.8mm tissue deformation at 4m/s) or sham surgery and then were randomly assigned to groups receiving standard (STD) housing or 4h, 6h, or 24h of EE daily. Motor function (beam-balance/walk and rotarod) was assessed on post-operative days 1-5 and every other day from 1 to 19, respectively. Spatial learning/memory (Morris water maze) was evaluated on days 14-19, and cortical lesion volume was quantified on day 21. No statistical differences were appreciated among the sham controls in any assessment and thus the data were pooled. All EE conditions improved motor function and memory retention, but only 6h and 24h enhanced spatial learning relative to STD (p<0.05). Moreover, EE, regardless of duration reduced cortical lesion volume (p<0.05). These data confirm that abbreviated EE confers robust neurobehavioral, cognitive, and histological benefits in TBI female rats, which supports the hypothesis and strengthens the utility of EE as a pre-clinical model of neurorehabilitation.


Assuntos
Comportamento Animal , Lesões Encefálicas , Transtornos Cognitivos/etiologia , Análise de Variância , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/enfermagem , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Feminino , Atividade Motora/fisiologia , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Aprendizagem Espacial , Fatores de Tempo , Resultado do Tratamento
6.
Prog Neurobiol ; 142: 45-67, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27166858

RESUMO

Traumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets. Hence, the use of combination therapies (i.e., polytherapy) has emerged as a viable approach. Stringent criteria, such as verification of each individual treatment plus the combination, a focus on behavioral outcome, and post-injury vs. pre-injury treatments, were employed to determine which studies were appropriate for review. The selection process resulted in 37 papers that fit the specifications. The review, which is the first to comprehensively assess the effects of combination therapies on behavioral outcomes after TBI, encompasses five broad categories (inflammation, oxidative stress, neurotransmitter dysregulation, neurotrophins, and stem cells, with and without rehabilitative therapies). Overall, the findings suggest that combination therapies can be more beneficial than monotherapies as indicated by 46% of the studies exhibiting an additive or synergistic positive effect versus on 19% reporting a negative interaction. These encouraging findings serve as an impetus for continued combination studies after TBI and ultimately for the development of successful clinically relevant therapies.


Assuntos
Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/terapia , Terapia Cognitivo-Comportamental/métodos , Fármacos Neuroprotetores/uso terapêutico , Recuperação de Função Fisiológica , Transplante de Células-Tronco/métodos , Animais , Lesões Encefálicas Traumáticas/metabolismo , Terapia Combinada/métodos , Humanos , Fármacos Neuroprotetores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA