Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Acta Neuropathol ; 147(1): 44, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386085

RESUMO

The development of brain metastases hallmarks disease progression in 20-40% of melanoma patients and is a serious obstacle to therapy. Understanding the processes involved in the development and maintenance of melanoma brain metastases (MBM) is critical for the discovery of novel therapeutic strategies. Here, we generated transcriptome and methylome profiles of MBM showing high or low abundance of infiltrated Iba1high tumor-associated microglia and macrophages (TAMs). Our survey identified potential prognostic markers of favorable disease course and response to immune checkpoint inhibitor (ICi) therapy, among them APBB1IP and the interferon-responsive gene ITGB7. In MBM with high ITGB7/APBB1IP levels, the accumulation of TAMs correlated significantly with the immune score. Signature-based deconvolution of MBM via single sample GSEA revealed enrichment of interferon-response and immune signatures and revealed inflammation, stress and MET receptor signaling. MET receptor phosphorylation/activation maybe elicited by inflammatory processes in brain metastatic melanoma cells via stroma cell-released HGF. We found phospho-METY1234/1235 in a subset of MBM and observed a marked response of brain metastasis-derived cell lines (BMCs) that lacked druggable BRAF mutations or developed resistance to BRAF inhibitors (BRAFi) in vivo to MET inhibitors PHA-665752 and ARQ197 (tivantinib). In summary, the activation of MET receptor in brain colonizing melanoma cells by stromal cell-released HGF may promote tumor self-maintenance and expansion and might counteract ICi therapy. Therefore, therapeutic targeting of MET possibly serves as a promising strategy to control intracranial progressive disease and improve patient survival.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Progressão da Doença , Interferons
5.
Nat Commun ; 13(1): 7304, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435874

RESUMO

Melanoma brain metastases (MBM) variably respond to therapeutic interventions; thus determining patient's prognosis. However, the mechanisms that govern therapy response are poorly understood. Here, we use a multi-OMICS approach and targeted sequencing (TargetSeq) to unravel the programs that potentially control the development of progressive intracranial disease. Molecularly, the expression of E-cadherin (Ecad) or NGFR, the BRAF mutation state and level of immune cell infiltration subdivides tumors into proliferative/pigmented and invasive/stem-like/therapy-resistant irrespective of the intracranial location. The analysis of MAPK inhibitor-naive and refractory MBM reveals switching from Ecad-associated into NGFR-associated programs during progression. NGFR-associated programs control cell migration and proliferation via downstream transcription factors such as SOX4. Moreover, global methylome profiling uncovers 46 differentially methylated regions that discriminate BRAFmut and wildtype MBM. In summary, we propose that the expression of Ecad and NGFR sub- classifies MBM and suggest that the Ecad-to-NGFR phenotype switch is a rate-limiting process which potentially indicates drug-response and intracranial progression states in melanoma patients.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Melanoma/patologia , Neoplasias Encefálicas/patologia , Mutação , Fatores de Transcrição SOXC/genética
6.
J Clin Med ; 11(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743401

RESUMO

The utilization of fluorescein-guided biopsies has recently been discussed to improve and expedite operative techniques in the detection of tumor-positive tissue, as well as to avoid making sampling errors. In this study, we aimed to report our experience with fluorescein-guided biopsies and elucidate distribution patterns in different histopathological diagnoses in order to develop strategies to increase the efficiency and accuracy of this technique. We report on 45 fluorescence-guided stereotactic biopsies in 44 patients (15 female, 29 male) at our institution from March 2016 to March 2021, including 25 frame-based stereotactic biopsies and 20 frameless image-guided biopsies using VarioGuide®. A total number of 347 biopsy samples with a median of 8 samples (range: 4-18) per patient were evaluated for intraoperative fluorescein uptake and correlated to definitive histopathology. The median age at surgery was 63 years (range: 18-87). Of the acquired specimens, 63% were fluorescein positive. Final histopathology included glioblastoma (n = 16), B-cell non-Hodgkin lymphoma (n = 10), astrocytoma, IDH-mutant WHO grade III (n = 6), astrocytoma, IDH-mutant WHO grade II (n = 1), oligodendroglioma, IDH-mutant and 1p/19q-codeleted WHO grade II (n = 2), reactive CNS tissue/inflammation (n = 4), post-transplantation lymphoproliferative disorder (PTLD; n = 2), ependymoma (n = 1), infection (toxoplasmosis; n = 1), multiple sclerosis (n = 1), and metastasis (n = 1). The sensitivity for high-grade gliomas was 85%, and the specificity was 70%. For contrast-enhancing lesions, the specificity of fluorescein was 84%. The number needed to sample for contrast-enhancing lesions was three, and the overall number needed to sample for final histopathological diagnosis was five. Interestingly, in the astrocytoma, IDH-mutant WHO grade III group, 22/46 (48%) demonstrated fluorescein uptake despite no evidence for gadolinium uptake, and 73% of these were tumor-positive. In our patient series, fluorescein-guided stereotactic biopsy increases the likelihood of definitive neuropathological diagnosis, and the number needed to sample can be reduced by 50% in contrast-enhancing lesions.

7.
Nat Commun ; 13(1): 2558, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538064

RESUMO

Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations.


Assuntos
Neoplasias do Sistema Nervoso Central , Infecções por Vírus Epstein-Barr , Linfoma Difuso de Grandes Células B , Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Genômica , Herpesvirus Humano 4 , Humanos , Linfoma Difuso de Grandes Células B/metabolismo
8.
JAMA Netw Open ; 5(4): e229553, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486401

RESUMO

Importance: Patients with brain metastases from non-small cell lung cancer (NSCLC) have regularly been excluded from prospective clinical trials that include therapy with immune checkpoint inhibitors (ICIs). Clinical data demonstrating benefit with ICIs, specifically following neurosurgical brain metastasis resection, are scarce. Objective: To evaluate and compare the association of radiation therapy with ICIs vs classic therapy involving radiation therapy and chemotherapy regarding overall survival in a cohort of patients who underwent NSCLC brain metastasis resection. Design, Setting and Participants: This single-center 1:1 propensity-matched comparative effectiveness study at the largest neurosurgical clinic in Germany included individuals who had undergone craniotomy with brain metastasis resection from January 2010 to December 2021 with histologically confirmed NSCLC. Of 1690 patients with lung cancer and brain metastasis, 480 were included in the study. Key exclusion criteria were small-cell lung cancer, lack of tumor cells by means of histopathological analysis on brain metastasis resection, and patients who underwent biopsy without tumor resection. The association of overall survival with treatment with radiation therapy and chemotherapy vs radiation therapy and ICI was evaluated. Exposures: Radiation therapy and chemotherapy vs radiation therapy and ICI following craniotomy and microsurgical brain metastasis resection. Main Outcomes and Measures: Median overall survival. Results: From the whole cohort of patients with NSCLC (N = 384), 215 (56%) were male and 169 (44%) were female. The median (IQR) age was 64 (57-72) years. The 2 cohorts of interest included 108 patients (31%) with radiation therapy and chemotherapy and 63 patients (16%) with radiation therapy and ICI following neurosurgical metastasis removal (before matching). Median (IQR) follow-up time for the total cohort was 47.9 (28.2-70.1) months with 89 patients (23%) being censored and 295 (77%) dead at the end of follow-up in December 2021. After covariate equalization using propensity score matching (62 patients per group), patients receiving radiation therapy and chemotherapy after neurosurgery had significantly lower overall survival (11.8 months; 95% CI; 9.1-15.2) compared with patients with radiation therapy and ICIs (23.0 months; 95% CI; 20.3-53.8) (P < .001). Conclusions and Relevance: Patients with NSCLC brain metastases undergoing neurosurgical resection had longer overall survival when treated with radiation therapy and ICIs following neurosurgery compared with those receiving platinum-based chemotherapy and radiation. Radiation and systemic immunotherapy should be regularly evaluated as a treatment option for these patients.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Idoso , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
9.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34914922

RESUMO

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/virologia , Macrófagos/patologia , Macrófagos/virologia , SARS-CoV-2/fisiologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagem , Comunicação Celular , Estudos de Coortes , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/genética , Células-Tronco Mesenquimais/patologia , Fenótipo , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Tomografia Computadorizada por Raios X , Transcrição Gênica
10.
Children (Basel) ; 8(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199532

RESUMO

We here report the case of a 2-year-old patient with a primary central nervous system lymphoma of B-cell origin. Due to their past medical history of repeated respiratory tract infections and the marked chemotherapy-associated toxicity and infectious comorbidity, we suspected that the patient also suffered from an inherited immune deficiency disorder. Despite the lack of classical pathognomonic symptoms for ataxia teleangiectasia and missing evidence for a cancer predisposition syndrome in the family, genetic testing identified biallelic germline mutations, including the rare pathogenic variant c.3206delC (p.Pro1069Leufs*2), in the ataxia telangiectasia-mutated (ATM) gene. The case highlights the importance of searching for immune deficiency disorders associated with primary central nervous system lymphoma before treatment initiation and the urgent need to develop novel treatment strategies for cancer patients with underlying immunodeficiency syndromes.

11.
JAMA Neurol ; 78(8): 948-960, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34115106

RESUMO

Importance: Myalgia, increased levels of creatine kinase, and persistent muscle weakness have been reported in patients with COVID-19. Objective: To study skeletal muscle and myocardial inflammation in patients with COVID-19 who had died. Design, Setting, and Participants: This case-control autopsy series was conducted in a university hospital as a multidisciplinary postmortem investigation. Patients with COVID-19 or other critical illnesses who had died between March 2020 and February 2021 and on whom an autopsy was performed were included. Individuals for whom informed consent to autopsy was available and the postmortem interval was less than 6 days were randomly selected. Individuals who were infected with SARS-CoV-2 per polymerase chain reaction test results and had clinical features suggestive of COVID-19 were compared with individuals with negative SARS-CoV-2 polymerase chain reaction test results and an absence of clinical features suggestive of COVID-19. Main Outcomes and Measures: Inflammation of skeletal muscle tissue was assessed by quantification of immune cell infiltrates, expression of major histocompatibility complex (MHC) class I and class II antigens on the sarcolemma, and a blinded evaluation on a visual analog scale ranging from absence of pathology to the most pronounced pathology. Inflammation of cardiac muscles was assessed by quantification of immune cell infiltrates. Results: Forty-three patients with COVID-19 (median [interquartile range] age, 72 [16] years; 31 men [72%]) and 11 patients with diseases other than COVID-19 (median [interquartile range] age, 71 [5] years; 7 men [64%]) were included. Skeletal muscle samples from the patients who died with COVID-19 showed a higher overall pathology score (mean [SD], 3.4 [1.8] vs 1.5 [1.0]; 95% CI, 0-3; P < .001) and a higher inflammation score (mean [SD], 3.5 [2.1] vs 1.0 [0.6]; 95% CI, 0-4; P < .001). Relevant expression of MHC class I antigens on the sarcolemma was present in 23 of 42 specimens from patients with COVID-19 (55%) and upregulation of MHC class II antigens in 7 of 42 specimens from patients with COVID-19 (17%), but neither were found in any of the controls. Increased numbers of natural killer cells (median [interquartile range], 8 [8] vs 3 [4] cells per 10 high-power fields; 95% CI, 1-10 cells per 10 high-power fields; P < .001) were found. Skeletal muscles showed more inflammatory features than cardiac muscles, and inflammation was most pronounced in patients with COVID-19 with chronic courses. In some muscle specimens, SARS-CoV-2 RNA was detected by reverse transcription-polymerase chain reaction, but no evidence for a direct viral infection of myofibers was found by immunohistochemistry and electron microscopy. Conclusions and Relevance: In this case-control study of patients who had died with and without COVID-19, most individuals with severe COVID-19 showed signs of myositis ranging from mild to severe. Inflammation of skeletal muscles was associated with the duration of illness and was more pronounced than cardiac inflammation. Detection of viral load was low or negative in most skeletal and cardiac muscles and probably attributable to circulating viral RNA rather than genuine infection of myocytes. This suggests that SARS-CoV-2 may be associated with a postinfectious, immune-mediated myopathy.


Assuntos
COVID-19/patologia , Músculo Esquelético/patologia , Miocardite/patologia , Miocárdio/patologia , Miosite/patologia , Idoso , Idoso de 80 Anos ou mais , Autopsia , Linfócitos T CD8-Positivos/patologia , COVID-19/metabolismo , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Estudos de Casos e Controles , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Células Matadoras Naturais/patologia , Leucócitos/patologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Miocardite/metabolismo , Miocárdio/metabolismo , Miosite/metabolismo , RNA Viral/metabolismo , SARS-CoV-2 , Sarcolema/metabolismo , Fatores de Tempo
12.
Front Oncol ; 11: 654300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041024

RESUMO

OBJECTIVE: The utilization of fluorescein-guided biopsies and resection has been recently discussed as a suitable strategy to improve and expedite operative techniques for the resection of central nervous system (CNS) tumors. However, little is known about the optical properties of sodium fluorescein (NaFl) in human tumor tissue and their potential impact on ex vivo analyses involving fluorescence-based methods. METHODS: Tumor tissue was obtained from a study cohort of an observational study on the utilization of fluorescein-guided biopsy and resection (n=5). The optical properties of fluorescein-stained tissue were compared to the optical features of the dye in vitro and in control samples consisting of tumor tissue of high-grade glioma patients (n=3) without intravenous (i.v.) application of NaFl. The dye-exposed tumor tissues were used for optical measurements to confirm the detectability of NaFl emission ex vivo. The tissue samples were fixed in 4%PFA, immersed in 30% sucrose, embedded in Tissue-Tek OCT compound, and cut to 10 µm cryosections. Spatially resolved emission spectra from tumor samples were recorded on representative slides with a Confocal Laser Scanning Microscope FV1000 (Olympus GmbH, Hamburg, Germany) upon excitation with λexc = 488 nm. RESULTS: Optical measurements of fluorescein in 0.9% sodium chloride (NaCl) under in vitro conditions showed an absorption maximum of λmax abs = 479 nm as detected with spectrophotometer Specord 200 and an emission peak at λmax em = 538 nm recorded with the emCCD detection system of a custom-made microscope-based single particle setup using a 500 nm long-pass filter. Further measurements revealed pH- and concentration-dependent emission spectra of NaFl. Under ex vivo conditions, confocal laser scanning microscopy of fluorescein tumor samples revealed a slight bathochromic shift and a broadening of the emission band. CONCLUSION: Tumor uptake of NaFl leads to changes in the optical properties - a bathochromic shift and broadening of the emission band - possibly caused by the dye's high pH sensitivity and concentration-dependent reabsorption acting as an inner filter of the dye's emission, particularly in the short wavelength region of the emission spectrum where absorption and fluorescence overlap. Understanding the ex vivo optical properties of fluorescein is crucial for testing and validating its further applicability as an optical probe for intravital microscopy, immunofluorescence localization studies, and flow cytometry analysis.

13.
Brain Pathol ; 31(3): e12957, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34043263

RESUMO

Dermatomyositis (DM) is a systemic idiopathic inflammatory disease affecting skeletal muscle and skin, clinically characterized by symmetrical proximal muscle weakness and typical skin lesions. Recently, myositis-specific autoantibodies (MSA) became of utmost importance because they strongly correlate with distinct clinical manifestations and prognosis. Antibodies against transcription intermediary factor 1γ (TIF-1γ) are frequently associated with increased risk of malignancy, a specific cutaneous phenotype and limited response to therapy in adult DM patients. Anti-Mi-2 autoantibodies, in contrast, are typically associated with classic DM rashes, prominent skeletal muscle weakness, better therapeutic response and prognosis, and less frequently with cancer. Nevertheless, the sensitivity of autoantibody testing is only moderate, and alternative reliable methods for DM patient stratification and prediction of cancer risk are needed. To further investigate these clinically distinct DM subgroups, we herein analyzed 30 DM patients (n = 15 Mi-2+ and n = 15 TIF-1 γ+ ) and n = 8 non-disease controls (NDC). We demonstrate that the NanoString technology can be used as a very sensitive method to clearly differentiate these two clinically distinct DM subgroups. Using the nCounter PanCancer Immune Profiling Panel™, we identified a set of significantly dysregulated genes in anti-TIF-1γ+ patient muscle biopsies including VEGFA, DDX58, IFNB1, CCL5, IL12RB2, and CD84. Investigation of type I IFN-regulated transcripts revealed a striking type I interferon signature in anti-Mi-2+ patient biopsies. Our results help to stratify both subgroups and predict, which DM patients require an intensified diagnostic procedure and might have a poorer outcome. Potentially, this could also have implications for the therapeutic approach.


Assuntos
Autoanticorpos/imunologia , Dermatomiosite/imunologia , Neoplasias/patologia , Adulto , Dermatomiosite/complicações , Dermatomiosite/diagnóstico , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Fenótipo , Prognóstico , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
15.
J Pathol ; 253(2): 160-173, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33044746

RESUMO

Myeloid cells are an inherent part of the microenvironment of glioblastoma multiforme (GBM). There is growing evidence for their participation in mechanisms of tumor escape, especially in the development of resistance following initially promising anti-VEGF/VEGFR treatment. Thus, we sought to define the capability of myeloid cells to contribute to the expression of proangiogenic molecules in human GBM. We investigated GBM specimens in comparison with anaplastic astrocytoma (WHO grade III) and epilepsy patient samples freshly obtained from surgery. Flow cytometric analyses revealed two distinct CD11b+ CD45+ cell populations in GBM tissues, which were identified as microglia/macrophages and granulocytes. Due to varied granulocyte influx, GBM samples were subdivided into groups with low (GBM-lPMNL) and high (GBM-hPMNL) numbers of granulocytes (polymorphonuclear leukocytes; PMNL), which were related to activation of the microglia/macrophage population. Microglia/macrophages of the GBM-lPMNL group were similar to those of astrocytoma specimens, but those of GBM-hPMNL tissues revealed an altered phenotype by expressing high levels of CD163, TIE2, HIF1α, VEGF, CXCL2 and CD13. Although microglia/macrophages represented the main source of alternative proangiogenic factors, additionally granulocytes participated by production of IL8 and CD13. Moreover, microglia/macrophages of the GBM-hPMNL specimens were highly associated with tumor blood vessels, accompanied by remodeling of the vascular structure. Our data emphasize that tumor-infiltrating myeloid cells might play a crucial role for limited efficacy of anti-angiogenic therapy bypassing VEGF-mediated pathways through expression of alternative proangiogenic factors. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Adulto , Idoso , Animais , Encéfalo/patologia , Feminino , Granulócitos/patologia , Humanos , Estimativa de Kaplan-Meier , Macrófagos/patologia , Masculino , Camundongos , Microglia/patologia , Pessoa de Meia-Idade , Células Mieloides/patologia , Fenótipo , Microambiente Tumoral
16.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545380

RESUMO

Glioblastoma (GBM) present with an abundant and aberrant tumor neo-vasculature. While rapid growth of solid tumors depends on the initiation of tumor angiogenesis, GBM also progress by infiltrative growth and vascular co-option. The angiogenic factor apelin (APLN) and its receptor (APLNR) are upregulated in GBM patient samples as compared to normal brain tissue. Here, we studied the role of apelin/APLNR signaling in GBM angiogenesis and growth. By functional analysis of apelin in orthotopic GBM mouse models, we found that apelin/APLNR signaling is required for in vivo tumor angiogenesis. Knockdown of tumor cell-derived APLN massively reduced the tumor vasculature. Additional loss of the apelin signal in endothelial tip cells using the APLN-knockout (KO) mouse led to a further reduction of GBM angiogenesis. Direct infusion of the bioactive peptide apelin-13 rescued the vascular loss-of-function phenotype specifically. In addition, APLN depletion massively reduced angiogenesis-dependent tumor growth. Consequently, survival of GBM-bearing mice was significantly increased when APLN expression was missing in the brain tumor microenvironment. Thus, we suggest that targeting vascular apelin may serve as an alternative strategy for anti-angiogenesis in GBM.


Assuntos
Apelina/metabolismo , Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/irrigação sanguínea , Neovascularização Patológica/patologia , Animais , Apelina/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Imageamento por Ressonância Magnética , Camundongos Knockout , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/mortalidade , Neovascularização Patológica/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Brain Pathol ; 30(2): 261-271, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31376301

RESUMO

Diffuse myofiber necrosis in the context of inflammatory myopathy is the hallmark of immune-mediated necrotizing myopathy (IMNM). We have previously shown that skeletal muscle fibers of IMNM patients may display nonrimmed vacuoles and sarcoplasmic irregularities. The dysfunctional chaperone activity has been linked to the defective assembly of skeletal muscle proteins and their degradation via lysosomes, autophagy and the proteasomal machinery. This study was undertaken to highlight a chaperone-assisted selective autophagy (CASA) pathway, functionally involved in protein homeostasis, cell stress and the immune response in skeletal muscle of IMNM patients. Skeletal muscle biopsies from 54 IMNM patients were analyzed by immunostaining, as well as by qPCR. Eight biopsies of sIBM patients served as pathological controls, and eight biopsies of nondisease control subjects were included. Alteration of autophagy was detectable in all IMNM biopsy samples highlighted via a diffuse sarcoplasmic staining pattern by p62 and LC3 independent of vacuoles. This pattern was at variance with the coarse focal staining pattern mostly confined to rimmed vacuoles in sIBM. Colocalization of p62 with the chaperone proteins HSP70 and αB-crystalline points to the specific targeting of misfolded proteins to the CASA machinery. Bcl2-associated athanogene 3 (BAG3) positivity of these fibers emphasizes the selectivity of autophagy processes and these fibers also express MHC class I sarcolemma. Expression of genes involved in autophagy and endoplasmic reticulum (ER) stress pathways studied here is significantly upregulated in IMNM. We highlight that vacuoles without sarcolemmal features may arise in IMNM muscle biopsies, and they must not be confounded with sIBM-specific vacuoles. Further, we show the activation of selective autophagy and emphasize the role of chaperones in this context. CASA occurs in IMNM muscle, and specific molecular pathways of autophagy differ from the ones in sIBM, with p62 as a unique identifier of this process.


Assuntos
Autofagia/fisiologia , Miosite/patologia , Proteína Sequestossoma-1/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/metabolismo , Necrose , Adulto Jovem
18.
BMC Cancer ; 19(1): 895, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500597

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. METHODS: CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. RESULTS: All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. CONCLUSION: Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Gangliosídeos/imunologia , Molécula L1 de Adesão de Célula Nervosa/imunologia , Receptores de Antígenos Quiméricos , Retinoblastoma/terapia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Criança , Pré-Escolar , Citotoxicidade Imunológica , Feminino , Humanos , Lactente , Masculino , Retinoblastoma/imunologia , Retinoblastoma/metabolismo , Estudos Retrospectivos , Linfócitos T/imunologia
19.
Acta Neuropathol Commun ; 7(1): 89, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31167648

RESUMO

Methylation of the O(6)-Methylguanine-DNA methyltransferase (MGMT) promoter is predictive for treatment response in glioblastoma patients. However, precise predictive cutoff values to distinguish "MGMT methylated" from "MGMT unmethylated" patients remain highly debated in terms of pyrosequencing (PSQ) analysis. We retrospectively analyzed a clinically and molecularly very well-characterized cohort of 111 IDH wildtype glioblastoma patients, who underwent gross total tumor resection and received standard Stupp treatment. Detailed clinical parameters were obtained. Predictive cutoff values for MGMT promoter methylation were determined using ROC curve analysis and survival curve comparison using Log-rank (Mantel-Cox) test. MGMT status was analyzed using pyrosequencing (PSQ), semi-quantitative methylation specific PCR (sqMSP) and direct bisulfite sequencing (dBiSeq). Highly methylated (> 20%) MGMT correlated with significantly improved progression-free survival (PFS) and overall survival (OS) in our cohort. Median PFS was 7.2 months in the unmethylated group (UM, < 10% mean methylation), 10.4 months in the low methylated group (LM, 10-20% mean methylation) and 19.83 months in the highly methylated group (HM, > 20% mean methylation). Median OS was 13.4 months for UM, 17.9 months for LM and 29.93 months for HM. Within the LM group, correlation of PSQ and sqMSP or dBiSeq was only conclusive in 51.5% of our cases. ROC curve analysis revealed superior test precision for survival if additional sqMSP results were considered (AUC = 0.76) compared to PSQ (cutoff 10%) alone (AUC = 0.67). We therefore challenge the widely used, strict PSQ cutoff at 10% which might not fully reflect the clinical response to alkylating agents and suggest applying a second method for MGMT testing (e.g. MSP) to confirm PSQ results for patients with LM MGMT levels if therapeutically relevant.


Assuntos
Neoplasias Encefálicas/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Neoplasias Encefálicas/diagnóstico , Estudos de Coortes , Feminino , Glioblastoma/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Adulto Jovem
20.
Cancer Res ; 79(9): 2298-2313, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30718358

RESUMO

Antiangiogenic therapy of glioblastoma (GBM) with bevacizumab, a VEGFA-blocking antibody, may accelerate tumor cell invasion and induce alternative angiogenic pathways. Here we investigate the roles of the proangiogenic apelin receptor APLNR and its cognate ligand apelin in VEGFA/VEGFR2 antiangiogenic therapy against distinct subtypes of GBM. In proneural GBM, apelin levels were downregulated by VEGFA or VEGFR2 blockade. A central role for apelin/APLNR in controlling GBM vascularization was corroborated in a serial implantation model of the angiogenic switch that occurs in human GBM. Apelin and APLNR are broadly expressed in human GBM, and knockdown or knockout of APLN in orthotopic models of proneural or classical GBM subtypes significantly reduced GBM vascularization compared with controls. However, reduction in apelin expression led to accelerated GBM cell invasion. Analysis of stereotactic GBM biopsies from patients as well as from in vitro and in vivo experiments revealed increased dissemination of APLNR-positive tumor cells when apelin levels were reduced. Application of apelin-F13A, a mutant APLNR ligand, blocked tumor angiogenesis and GBM cell invasion. Furthermore, cotargeting VEGFR2 and APLNR synergistically improved survival of mice bearing proneural GBM. In summary, we show that apelin/APLNR signaling controls GBM angiogenesis and invasion and that both pathologic features are blunted by apelin-F13A. We suggest that apelin-F13A can improve the efficiency and reduce the side effects of established antiangiogenic treatments for distinct GBM subtypes. SIGNIFICANCE: Pharmacologic targeting of the APLNR acts synergistically with established antiangiogenic treatments in glioblastoma and blunts therapy resistance to current strategies for antiangiogenesis.See related commentary by Amoozgar et al., p. 2104.


Assuntos
Glioblastoma , Adulto , Inibidores da Angiogênese , Animais , Apelina , Receptores de Apelina , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA