Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 40(3): 217-218, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28171744

RESUMO

Centrosome amplification is a common feature of many types of cancer, but whether it is a cause or consequence is hotly debated. In this issue of Developmental Cell, Levine et al. (2017) provide strong evidence that centrosome amplification is sufficient to initiate tumorigenesis in a mouse model.


Assuntos
Centrossomo , Neoplasias , Animais , Transformação Celular Neoplásica
2.
PLoS Genet ; 11(5): e1005261, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26020779

RESUMO

Acentriolar microtubule organizing centers (aMTOCs) are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2--the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems). We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs.


Assuntos
Centro Organizador dos Microtúbulos , Microtúbulos/genética , Mitose/genética , Fuso Acromático/genética , Animais , Centríolos/genética , Centrossomo/metabolismo , Drosophila melanogaster , Cinesinas/genética , Cinesinas/metabolismo , Meiose/genética , Microtúbulos/metabolismo , Polos do Fuso/genética
3.
Dev Cell ; 28(6): 659-69, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24656740

RESUMO

Centrosomes are important cell organizers. They consist of a pair of centrioles surrounded by pericentriolar material (PCM) that expands dramatically during mitosis-a process termed centrosome maturation. How centrosomes mature remains mysterious. Here, we identify a domain in Drosophila Cnn that appears to be phosphorylated by Polo/Plk1 specifically at centrosomes during mitosis. The phosphorylation promotes the assembly of a Cnn scaffold around the centrioles that is in constant flux, with Cnn molecules recruited continuously around the centrioles as the scaffold spreads slowly outward. Mutations that block Cnn phosphorylation strongly inhibit scaffold assembly and centrosome maturation, whereas phosphomimicking mutations allow Cnn to multimerize in vitro and to spontaneously form cytoplasmic scaffolds in vivo that organize microtubules independently of centrosomes. We conclude that Polo/Plk1 initiates the phosphorylation-dependent assembly of a Cnn scaffold around centrioles that is essential for efficient centrosome maturation in flies.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citoplasma/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Processamento de Imagem Assistida por Computador , Imunoprecipitação , Microtúbulos/metabolismo , Dados de Sequência Molecular , Fosforilação , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Técnicas do Sistema de Duplo-Híbrido , Quinase 1 Polo-Like
4.
Biol Open ; 1(10): 983-93, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213376

RESUMO

Centrosome defects are a common feature of many cancers, and they can predispose fly brain cells to form tumours. In flies, centrosome defects perturb the asymmetric division of the neural stem cells, but it is unclear how this might lead to malignant transformation. One possibility is that centrosome defects might also perturb cellular homeostasis: for example, stress pathways are often activated in response to centrosome defects in cultured cells, and stress contributes to tumourigenesis in some fly models. Here we attempt to assess whether centrosome loss or centrosome amplification perturbs cell physiology in vivo by profiling the global transcriptome of Drosophila larval brains and imaginal discs that either lack centrosomes or have too many centrosomes. Surprisingly, we find that centrosome loss or amplification leads to few changes in the transcriptional profile of these cells, indicating that centrosome defects are surprisingly well tolerated by these cells. These observations indicate that centrosome defects can predispose fly brain cells to form tumours without, at least initially, dramatically altering their physiology.

5.
Cell ; 139(4): 663-78, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914163

RESUMO

Centrioles are barrel-shaped structures that are essential for the formation of centrosomes, cilia, and flagella. Here we review recent advances in our understanding of the function and biogenesis of these organelles, and we emphasize their connection to human disease. Deregulation of centrosome numbers has long been proposed to contribute to genome instability and tumor formation, whereas mutations in centrosomal proteins have recently been genetically linked to microcephaly and dwarfism. Finally, structural or functional centriole aberrations contribute to ciliopathies, a variety of complex diseases that stem from the absence or dysfunction of cilia.


Assuntos
Centríolos/fisiologia , Centrossomo/fisiologia , Cílios/fisiologia , Células Eucarióticas/citologia , Animais , Humanos , Neoplasias/patologia , Neoplasias/fisiopatologia , Patologia
6.
Cell ; 133(6): 1032-42, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18555779

RESUMO

Centrosome amplification is a common feature of many cancer cells, and it has been previously proposed that centrosome amplification can drive genetic instability and so tumorigenesis. To test this hypothesis, we generated Drosophila lines that have extra centrosomes in approximately 60% of their somatic cells. Many cells with extra centrosomes initially form multipolar spindles, but these spindles ultimately become bipolar. This requires a delay in mitosis that is mediated by the spindle assembly checkpoint (SAC). As a result of this delay, there is no dramatic increase in genetic instability in flies with extra centrosomes, and these flies maintain a stable diploid genome over many generations. The asymmetric division of the larval neural stem cells, however, is compromised in the presence of extra centrosomes, and larval brain cells with extra centrosomes can generate metastatic tumors when transplanted into the abdomens of wild-type hosts. Thus, centrosome amplification can initiate tumorigenesis in flies.


Assuntos
Centrossomo/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cinesinas/metabolismo , Larva/citologia , Larva/genética , Mitose , Proteínas Serina-Treonina Quinases , Fuso Acromático
7.
Curr Biol ; 17(17): 1498-503, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17716897

RESUMO

Centrosome asymmetry plays a key role in ensuring the asymmetric division of Drosophila neural stem cells (neuroblasts [NBs]) and male germline stem cells (GSCs) [1-3]. In both cases, one centrosome is anchored close to a specific cortical region during interphase, thus defining the orientation of the spindle during the ensuing mitosis. To test whether asymmetric centrosome behavior is a general feature of stem cells, we have studied female GSCs, which divide asymmetrically, producing another GSC and a cystoblast. The cystoblast then divides and matures into an oocyte, a process in which centrosomes exhibit a series of complex behaviors proposed to play a crucial role in oogenesis [4-6]. We show that the interphase centrosome does not define spindle orientation in female GSCs and that DSas-4 mutant GSCs [7], lacking centrioles and centrosomes, invariably divide asymmetrically to produce cystoblasts that proceed normally through oogenesis-remarkably, oocyte specification, microtubule organization, and mRNA localization are all unperturbed. Mature oocytes can be fertilized, but embryos that cannot support centriole replication arrest very early in development. Thus, centrosomes are dispensable for oogenesis but essential for early embryogenesis. These results reveal that asymmetric centrosome behavior is not an essential feature of stem cell divisions.


Assuntos
Centríolos/fisiologia , Drosophila/fisiologia , Desenvolvimento Embrionário/fisiologia , Oogênese/fisiologia , Células-Tronco Totipotentes/fisiologia , Animais , Proteínas de Drosophila/fisiologia , Feminino , Proteínas Associadas aos Microtúbulos , Microtúbulos/fisiologia , Oócitos/fisiologia , RNA Mensageiro/metabolismo
8.
Curr Biol ; 17(10): 834-43, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17475495

RESUMO

BACKGROUND: Centrosomes have important roles in many aspects of cell organization, and aberrations in their number and function are associated with various diseases, including cancer. Centrosomes consist of a pair of centrioles surrounded by a pericentriolar matrix (PCM), and their replication is tightly regulated. Here, we investigate the effects of overexpressing the three proteins known to be required for centriole replication in Drosophila-DSas-6, DSas-4, and Sak. RESULTS: By directly observing centriole replication in living Drosophila embryos, we show that the overexpression of GFP-DSas-6 can drive extra rounds of centriole replication within a single cell cycle. Extra centriole-like structures also accumulate in brain cells that overexpress either GFP-DSas-6 or GFP-Sak, but not DSas-4-GFP. No extra centrioles accumulate in spermatocytes that overexpress any of these three proteins. Most remarkably, the overexpression of any one of these three proteins results in the rapid de novo formation of many hundreds of centriole-like structures in unfertilized eggs, which normally do not contain centrioles. CONCLUSIONS: Our data suggest that the levels of centriolar DSas-6 determine the number of daughter centrioles formed during centriole replication. Overexpression of either DSas-6 or Sak can induce the formation of extra centrioles in some tissues but not others, suggesting that centriole replication is regulated differently in different tissues. The finding that the overexpression of DSas-4, DSas-6, or Sak can rapidly induce the de novo formation of centriole-like structures in Drosophila eggs suggests that this process results from the stabilization of centriole-precursors that are normally present in the egg.


Assuntos
Centríolos/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Drosophila/embriologia , Drosophila/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/análise , Larva/metabolismo , Larva/ultraestrutura , Masculino , Proteínas Associadas aos Microtúbulos , Oogênese , Óvulo/metabolismo , Óvulo/ultraestrutura , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes de Fusão/análise , Espermatócitos/metabolismo , Espermatócitos/ultraestrutura
10.
Genes Dev ; 17(3): 336-41, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12569123

RESUMO

The ch-TOG/XMAP215 family of proteins bind directly to microtubules and appear to play an essential role in stabilizing spindle microtubules. These proteins stabilize microtubules mainly by influencing microtubule plus-end dynamics, yet, in vivo, they are all strongly concentrated at spindle poles, where the minus ends of the microtubules are concentrated. In Drosophila embryos, the centrosomal protein D-TACC is required to efficiently recruit ch-TOG/Msps to centrosomes. In humans, ch-TOG and the three known TACC proteins have been implicated in cancer, but their functions are unknown. Here we extensively depleted TACC3 and ch-TOG from HeLa cells using RNA interference. In TACC3-depleted cells, spindles are well organized, but microtubules are partially destabilized and ch-TOG is no longer concentrated on spindle microtubules. In ch-TOG-depleted cells, relatively robust spindles form, but the spindles are highly disorganized. Thus, in human somatic cells, ch-TOG appears to play a major role in organizing spindle poles, and a more minor role in stabilizing spindle microtubules that is, at least in part, mediated via an interaction with TACC3.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , RNA Interferente Pequeno/metabolismo
11.
J Cell Sci ; 115(Pt 14): 2847-56, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12082146

RESUMO

In Drosophila cells, the destruction of cyclin B is spatially regulated. In cellularised embryos, cyclin B is initially degraded on the mitotic spindle and is then degraded in the cytoplasm. In syncytial embryos, only the spindle-associated cyclin B is degraded at the end of mitosis. The anaphase promoting complex/cyclosome (APC/C) targets cyclin B for destruction, but its subcellular localisation remains controversial. We constructed GFP fusions of two core APC/C subunits, Cdc16 and Cdc27. These fusion proteins were incorporated into the endogenous APC/C and were largely localised in the cytoplasm during interphase in living syncytial embryos. Both fusion proteins rapidly accumulated in the nucleus prior to nuclear envelope breakdown but only weakly associated with mitotic spindles throughout mitosis. Thus, the global activation of a spatially restricted APC/C cannot explain the spatially regulated destruction of cyclin B. Instead, different subpopulations of the APC/C must be activated at different times to degrade cyclin B. Surprisingly, we noticed that GFP-Cdc27 associated with mitotic chromosomes, whereas GFP-Cdc16 did not. Moreover, reducing the levels of Cdc16 or Cdc27 by >90% in tissue culture cells led to a transient mitotic arrest that was both biochemically and morphologically distinct. Taken together, our results raise the intriguing possibility that there could be multiple forms of the APC/C that are differentially localised and perform distinct functions.


Assuntos
Compartimento Celular/genética , Ciclina B/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero/embriologia , Ligases/metabolismo , Mitose/genética , Complexos Ubiquitina-Proteína Ligase , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina A/genética , Ciclina A/imunologia , Ciclina A/metabolismo , Ciclina B/genética , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde , Ligases/genética , Proteínas Luminescentes , Mutação/genética , Interferência de RNA/fisiologia , RNA de Cadeia Dupla , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
Trends Cell Biol ; 12(5): 222-5, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12062169

RESUMO

The recent discovery that many cancer cells have centrosomal abnormalities suggests a link between centrosomes and cancer. Members of the transforming acidic coiled-coil (TACC) family of proteins have been implicated in cancer and are concentrated at centrosomes, where they regulate microtubule stability. I discuss a model of how the TACC proteins might contribute to cancer. This model predicts that defects in TACC function can make important contributions to the development of cancer but are unlikely to be the primary cause of cancer. The model might also apply to several other centrosomal proteins that have been linked to cancer.


Assuntos
Centrossomo/ultraestrutura , Proteínas de Drosophila , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/metabolismo , Animais , Drosophila , Humanos , Mitose , Modelos Genéticos , Fenótipo , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/metabolismo
13.
J Cell Biol ; 156(3): 437-51, 2002 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-11827981

RESUMO

Disruption of the function of the A-type Aurora kinase of Drosophila by mutation or RNAi leads to a reduction in the length of astral microtubules in syncytial embryos, larval neuroblasts, and cultured S2 cells. In neuroblasts, it can also lead to loss of an organized centrosome and its associated aster from one of the spindle poles, whereas the centrosome at the other pole has multiple centrioles. When centrosomes are present at the poles of aurA mutants or aurA RNAi spindles, they retain many antigens but are missing the Drosophila counterpart of mammalian transforming acidic coiled coil (TACC) proteins, D-TACC. We show that a subpopulation of the total Aurora A is present in a complex with D-TACC, which is a substrate for the kinase. We propose that one of the functions of Aurora A kinase is to direct centrosomal organization such that D-TACC complexed to the MSPS/XMAP215 microtubule-associated protein may be recruited, and thus modulate the behavior of astral microtubules.


Assuntos
Centrossomo/enzimologia , Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/enzimologia , Mitose/genética , Proteínas Quinases/metabolismo , Fuso Acromático/enzimologia , Proteínas de Xenopus , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Aurora Quinases , Sítios de Ligação/genética , Compartimento Celular/fisiologia , Proteínas de Ciclo Celular , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína/genética , RNA/genética , RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA