Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110582

RESUMO

The oxidation of food emulsions causes rancidity, which reduces their shelf life. To prevent rancidity, synthetic antioxidants are widely used in the food industry. However, due to their potential health risks, researchers are exploring natural alternatives. This study aimed to investigate whether Rosa canina fruit extract (RCFE) could be used as a natural antioxidant to extend the shelf life of mayonnaise. Mayonnaise containing varying concentrations of RCFE [0.125% (T1), 0.25% (T2), 0.50% (T3), 0.75% (T4)] was compared to a mayonnaise control sample (C1) and a mayonnaise sample containing 0.02% BHT (C2) for 60 days of storage at 4 °C. RCFE was found to have high levels of total phenols content (52.06 ± 1.14 mg GAE g-1), total flavonoids content (26.31 ± 1.03 mg QE g-1), and free radical scavenging activity. The GC-MS analysis of RCFE revealed 39 different peaks, whereas the HPLC analysis showed the presence of 13 polyphenolic compounds in RCFE. The pH values of T2, T3, and T4 mayonnaise samples substantially declined as storage progressed; however, the reduction was less than that of C1 and C2. After 60 days, mayonnaise samples T2, T3, and T4 had greatly reduced peroxide and free fatty acid levels compared to C1 and C2. The mayonnaise enriched with RCFE (T3 and T4) had the most potent antioxidative ability and the lowest value of lipid hydroperoxides (peroxide value, POV) and the lowest value of thiobarbituric-acid-reactive substances (TBARS). The sensory evaluation revealed that the T3 sample exhibited the highest overall acceptability. In conclusion, this study recommends that RCFE could be used as a natural preservative to enhance the shelf life of functional foods.


Assuntos
Antioxidantes , Rosa , Antioxidantes/farmacologia , Antioxidantes/química , Rosa/química , Frutas , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Peróxidos , Compostos Fitoquímicos
2.
Front Pharmacol ; 14: 1166653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056985

RESUMO

Background: Pyroptosis is an inflammatory programmed cell death accompanied by activation of inflammasomes and maturation of pro-inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18. Pyroptosis is closely linked to the development of diabetic cardiomyopathy (DC). Pomegranate peel extract (PPE) exhibits a cardioprotective effect due to its antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanisms of the protective effect of PPE on the myocardium in a rat model of DC and determine the underlying molecular mechanism. Methods: Type 1 diabetes (T1DM) was induced in rats by intraperitoneal injection of streptozotocin. The rats in the treated groups received (150 mg/kg) PPE orally and daily for 8 weeks. The effects on the survival rate, lipid profile, serum cardiac troponin-1, lipid peroxidation, and tissue fibrosis were assessed. Additionally, the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue was determined. The PPE was analyzed using UPLC-MS/MS and NMR for characterizing the phytochemical content. Results: Prophylactic treatment with PPE significantly ameliorated cardiac hypertrophy in the diabetic rats and increased the survival rate. Moreover, prophylactic treatment with PPE in the diabetic rats significantly improved the lipid profile, decreased serum cardiac troponin-1, and decreased lipid peroxidation in the myocardial tissue. Histopathological examination of the cardiac tissues showed a marked reduction in fibrosis (decrease in collagen volume and number of TGF-ß-positive cells) and preservation of normal myocardial structures in the diabetic rats treated with PPE. There was a significant decrease in the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue of the diabetic rats treated with PPE. In addition, the concentration of IL-1ß and caspase-1 significantly decreased in the heart tissue of the same group. The protective effect of PPE on diabetic cardiomyopathy could be due to the inhibition of pyroptosis and downregulation of lncRNA-MALAT1. The phytochemical analysis of the PPE indicated that the major compounds were hexahydroxydiphenic acid glucoside, caffeoylquinic acid, gluconic acid, citric acid, gallic acid, and punicalagin. Conclusion: PPE exhibited a cardioprotective potential in diabetic rats due to its unique antioxidant, anti-inflammatory, and antifibrotic properties and its ability to improve the lipid profile. The protective effect of PPE on DC could be due to the inhibition of the NLRP3/caspase-1/IL-1ß signaling pathway and downregulation of lncRNA-MALAT1. PPE could be a promising therapy to protect against the development of DC, but further clinical studies are recommended.

3.
Plants (Basel) ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365320

RESUMO

Toxoplasmosis and cancer are serious worldwide diseases, and the available drugs cause serious side effects. Investigation for new alternative therapies from natural sources is now an increasing concern. Herein, we carried out, for the first time, an in vitro screening of Cycas rumphii Miq. leaves for toxoplasmocidal effect, using Viruluent RH Toxoplasma gondii, and cytotoxic activity against HEPG-2, HCT-116 and HELA cancer cell lines using MTT assay. Among the tested extracts, the ethyl acetate fraction was the most effective against T. gondii, with an EC50 of 3.51 ± 0.2 µg/mL compared to cotrimoxazole (4.18 ± 0.01 µg/mL) and was the most potent against the tested cell lines, especially HEPG-2, with an IC50 of 6.98 ± 0.5 µg/mL compared to doxorubicin (4.50 ± 0.2 µg/mL). Seven compounds were isolated from the ethyl acetate fraction by extensive chromatographic techniques and fully elucidated using different spectroscopies. Compound (7) is an undescribed 4', 4''' biapigenin di-C-glucoside, which showed a strong cytotoxic activity. Four known biflavonoids (1, 2, 4 and 5) in addition to a phenolic acid ester (3) and a flavonoid glycoside (6) were also isolated. Compounds (1, 3 and 6) were reported for the first time from C. rumphii.

4.
Antibiotics (Basel) ; 11(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421296

RESUMO

Flowers are rich sources of bioactive antimicrobial, antioxidant, and anticancer components. This study aimed to determine the constituents of the ethanol extract of Malvaviscus arboreus red flower (ERF) by GC-MS analysis and HPLC identification of phenolic compounds and flavonoids, in addition to the 1HNMR fingerprint. The antimicrobial, antioxidant, and cytotoxic activities of the ERF were investigated. The GC-MS analysis revealed twenty-one components, while HPLC analysis revealed the presence of phenolic and flavonoid compounds. The ERF showed antifungal and antibacterial activity. The highest antibacterial activity was found against Vibrio damsela where a time-kill assay revealed a decline in the amount of viable V. damsela. For fungi, the highest activity was observed against Aspergillus terreus. Using the SRB test on HepG2, the anti-proliferative efficacy of the ERF was evaluated. Cell cycle analysis was utilized to determine autophagic cell death. The ERF prevented the proliferation of the HepG2 cell line with an IC50 of 67.182 µg/µL. The extract primarily promoted apoptosis in HepG2 cells by accumulating hypodiploid cells in the sub-G0/G1 phase, increased caspase 3/7 activity, and caused considerable autophagic cell death in apoptosis-deficient cells. Finally, the observed elevation of cancer cell death indicated that ERF had substantial anticancer potential against HepG2 cells.

5.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297282

RESUMO

The search for anticancer drugs is of continuous interest. Arecoline is an alkaloid with anticancer activity. Herein, the metabolism of arecoline through fungal transformation was investigated for the discovery of potential anticancer drugs with higher activity and selectivity. Compounds 1-5 were isolated, and their structures were fully elucidated using various spectroscopic analyses, including 1D and 2D NMR, ESIMS, and HRESIMS. This is the first report for the isolation of compounds 1 and 2. An MTT assay was performed to determine the cytotoxic activity of arecoline and its metabolites in vitro using non-small-cell lung cancer A549 and leukemia K562 cell lines compared to staurosporine and doxorubicin as positive controls. For the non-small-cell lung A549 cell line, arecoline hydrobromide, staurosporine, and doxorubicin resulted in IC50 values of 11.73 ± 0.71 µM, 10.47 ± 0.64 µM, and 5.05 ± 0.13 µM, respectively, while compounds 1, 3, and 5 exhibited IC50 values of 3.08 ± 0.19 µM, 7.33 ± 0.45 µM, and 3.29 ± 0.20 µM, respectively. For the leukemia K562 cell line, the IC50 values of arecoline hydrobromide, staurosporine, and doxorubicin were 15.3 ± 1.08 µM, 5.07 ± 0.36 µM, and 6.94 ± 0.21 µM, respectively, while the IC50 values of compounds 1, 3 and 5 were 1.56 ± 0.11 µM, 3.33 ± 0.24 µM, and 2.15 ± 0.15 µM, respectively. The selectivity index value of these compounds was higher than 3. These results indicated that compounds 1, 3, and 5 are very strong cytotoxic agents with higher activity than the positive controls and good selectivity toward the tested cancer cell lines. Cell cycle arrest was then studied by flow cytometry to investigate the apoptotic mechanism. Docking simulation revealed that most compounds possessed good binding poses and favorable protein-ligand interactions with muscarinic acetylcholine receptor M3-mAChR protein. In silico study of pharmacokinetics using SwissADME predicted compounds 1-5 to be drug-like with a high probability of good oral bioavailability.

6.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297307

RESUMO

Natural nitrogen heterocycles biotransformation has been extensively used to prepare synthetic drugs and explore the fate of therapeutic agents inside the body. Herein, the ability of filamentous fungi to biotransform boldine and berberine was investigated. Docking simulation studies of boldine, berberine and their metabolites on the target enzymes: telomerase (TERT) and human protein tyrosine phosphatase 1B (PTP-1B) were also performed to investigate the anticancer and antidiabetic potentials of compounds in silico. The biotransformation of boldine and berberine with Cunninghamella elegans NRRL 2310, Rhodotorula rubra NRRL y1592, Penicillium chrysogeneum ATCC 10002, Cunninghamella blackesleeana MR198 and Cunninghamella blackesleeana NRRL 1369 via demethylation, N- oxidation, glucosidation, oxidation and hydroxylation reactions produced seven metabolites, namely: 1,10-didesmethyl-boldine (1), laurolitsine (2), 1,10-didesmethyl-norboldine (3), boldine-9-O-ß-D-glucoside (4), tridesmethyl berberine (5), demethylene berberine (6), and lambertine (7). Primarily, the structures of the metabolites were established by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) analyses and mass spectrometry. In silico molecular docking simulation of the metabolites of boldine and berberine to the proteins TERT and PTP-1B, respectively, revealed good binding MolDock scores comparable to boldine and berberine and favorable interactions with the catalytic sites of the proteins. In conclusion, this study presented promising biologically prepared nitrogen scaffolds (isoquinolines) of boldine and berberine.

7.
Metabolites ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36676935

RESUMO

Toxoplasmosis and cancer are life-threatening diseases with worldwide distribution. However, currently used chemosynthetic treatments are not devoid of their own intrinsic problems. Natural metabolites are gaining attention due to their lower side effects. In this study, we investigated for the first time Zamia floridana leaves extract and its different fractions for their toxoplasmocidal activity, using Virulent RH Toxoplasma gondii, and cytotoxic activity against MCF-7 and HCT-116 cancer cell lines using MTT assay. The n-butanol fraction was the most potent fraction against T. gondii with an EC50 of 7.16 ± 0.4 µg/mL compared to cotrimoxazole (4.18 ± 0.3 µg/mL). In addition, the n-BuOH fraction showed a significant cytotoxicity against MCF-7 and HCT-116 with IC50 of 12.33 ± 1.1 and 17.88 ± 1.4 µg/mL, respectively, compared to doxorubicin (4.17 ± 0.2 and 5.23 ± 0.3 µg/mL, respectively), with higher safety index against normal cell line (WISH). Therefore, the n-BuOH fraction was investigated for its phytochemicals using extensive chromatographic techniques, which led to the isolation of six compounds that were fully characterized using different spectroscopic techniques. Three biflavonoids (1, 2 and 4) in addition to two phenolic acid derivatives (3 and 5) and a flavonoid glycoside (6) were isolated. Compounds (1, 3, 5 and 6) were reported for the first time from Z. floridana. In silico docking studies for toxoplasmocidal and cytotoxic effects of these compounds revealed that compounds (1, 2, 4 and 6) have promising inhibition potential of either thymidylate synthase-dihydrofolate reductase (TS-DHFR) or cyclin dependent kinase 2 (CDK2) target proteins. This study is considered the first report of chemical and biological investigation of Z. floridana leaves.

8.
Biomed Pharmacother ; 143: 112151, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507115

RESUMO

Wound healing is a public health concern. Licorice gained a great attention for its antioxidant and anti-inflammatory properties which expand its valuable effects as a herbal medicine. In this study, we pointed out to the wound healing potential and the mechanism by which licorice alcoholic extract can modulate cutaneous wound healing through immune, antioxidant, histopathological, immunohistochemical (IHC) and molecular studies. 24 Wister rats were assigned into 3 groups (n = 8 each); control group, topical and oral supplied groups. Licorice extract administration significantly increased total and differential leucocyte counts, phagocytic activity of neutrophils, antioxidant biomarkers as superoxide dismutase (SOD), glutathione peroxidase activities (GPx) and reduced glutathione (GSH) content with a notable reduction in oxidative stress marker malondialdehyde (MDA). Moreover, histopathological findings detected complete re-epithelialization with increasing collagen synthesis while IHC results revealed a significant enhancement in the expression of α-SMA, PDGFR-α, FGFR1 and Cytokeratin 14 in licorice treated groups compared with the control group. Licorice extract supplementation accelerated wound healing by increasing angiogenesis and collagen deposition through up-regulation of bFGF, VEGF and TGF-ß gene expression levels compared with the control group. UPLC-PDA-MS/MS aided to authenticate the studied Glycyrrihza species and recognized 101 potential constituents that may be responsible for licorice-exhibited potentials. Based on our observations we concluded that licorice enhanced cutaneous wound healing via its free radical-scavenging potential, potent antioxidant activities, and anti-inflammatory actions. Therefore, licorice could be used as a potential alternative therapy for wound injury which could overcome the associated limitations of modern therapeutic products.


Assuntos
Indutores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Glycyrrhiza , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/tratamento farmacológico , Indutores da Angiogênese/isolamento & purificação , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glycyrrhiza/química , Mediadores da Inflamação/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Pele/lesões , Pele/metabolismo , Pele/patologia , Ferimentos Penetrantes/genética , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia
9.
Antioxidants (Basel) ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200190

RESUMO

Hepatocellular carcinoma (HCC) is the most common cancer in humans. Despite advances in its treatment, liver cancer remains one of the most difficult cancers to treat. This study aimed to investigate the ameliorative action and potential mechanism of Aspergillus awamori (ASP) administration against the initiation process of liver carcinogenesis induced by diethylnitrosamine (DEN) in male Wistar rats. Seventy-two male rats were divided equally into eight groups as follows, Group 1: untreated control; Group 2: DEN (200 mg/kg bw) intra-peritoneally for the initiation of HCC; Groups 3-5: DEN + ASP at a dose of 1, 0.5, and 0.25 mg/kg bw and groups 6-8: ASP at a dose of 1, 0.5, and 0.25 mg/kg bw. Supplementation of A. awamori significantly lightened the adverse impacts induced by DEN via restoring the leukogram to normal, lowering the elevated serum aspartate aminotransferase (AST), alanine transaminase (ALT), and γ-glutamyl transferase (GGT), and alkaline phosphatase (ALP). Furthermore, it enhanced the hepatic antioxidant capacity through increasing the reduced glutathione (GSH) level and catalase (CAT) activity with a marked reduction in malondialdehyde (MDA) level. In addition, it decreased the positive GST-P foci. Likewise, a significant alteration of DEN-associated hepatocarcinogenesis occurred through inhibiting cytochrome P450 (Cyp19) and activating p53 gene expression. In conclusion, supplementation of A. awamori counteracts the negative effects of DEN, inhibits the early development of GST-P-positive foci and could be used as a new alternative strategy for its chemo-preventive effect in liver cancer. To the best of our knowledge, the present study is the first to report the hepato-protective effect of A. awamori in induced hepatocarcinogenesis.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32656185

RESUMO

New anticancer agents are continually needed because cancerous cells continue to evolve resistance to the currently available chemotherapeutic agents. The aim of the present study was to screen, purify and characterize a hepatotoxic bacteriocin from Enterococcus species. The production of bacteriocin from the Enterococcus isolates was achieved based on their antibacterial activity against indicator reference strains. Enterococcus isolates showed a broad spectrum of antibacterial activity by forming inhibition zones with diameters ranged between 12 and 29 mm. The most potent bacteriocin producing strain was molecularly identified as Enterococcus thailandicus. The crude extracted bacteriocin was purified by cation exchange and size exclusion chromatography that resulted in 83 fractions. Among them, 18 factions were considered as bacteriocins based on their positive antibacterial effects. The anticancer effects of the purified bacteriocins were tested against HepG2 cell line. The most promising enterocin (LNS18) showed the highest anticancer effects against HepG2 cells (with 75.24% cellular inhibition percentages), with IC50 value 15.643 µM and without any significant cytotoxic effects on normal fibroblast cells (BJ ATCC® CRL-2522™). The mode of anticancer action of enterocin LNS18 against HepG2 cells could be explained by its efficacy to induce cellular ROS, decrease HepG2 CD markers and arrest cells in G0 phase. Amino acid sequence of enterocin LNS18 was determined and the deduced peptide of the structural gene showed 86 amino acids that shared 94.7% identity with enterocin NKR-5-3B from E. faecium. Enterocin LNS18 consisted of 6 α-helices; 5 circular and one linear. Model-template alignment constructed between enterocin LNS18 and NKR-5-3B revealed 95.31% identity. The predicted 3D homology model of LNS18, after circularization and release of 22 amino acids, showed the formation of a bond between Leu23 and Trp86 amino acid residues at the site of circularization. Furthermore, areas of positive charges were due to the presence of 6 lysine residues resulting in a net positive charge of +4 on the bacteriocin surface. Based on the above mentioned results, our characterized bacteriocin is a promising agent to target liver cancer without any significant toxic effects on normal cell lines.

11.
J Am Chem Soc ; 133(39): 15288-91, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21861518

RESUMO

The pacidamycins belong to a class of antimicrobial nucleoside antibiotics that act by inhibiting the clinically unexploited target translocase I, a key enzyme in peptidoglycan assembly. As with other nucleoside antibiotics, the pacidamycin 4',5'-dehydronucleoside portion is an essential pharmacophore. Here we show that the biosynthesis of the pacidamycin nucleoside in Streptomyces coeruleorubidus proceeds through three steps from uridine. The transformations involve oxidation of the 5'-alcohol by Pac11, transamination of the resulting aldehyde by Pac5, and dehydration by the Cupin-domain protein Pac13.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Peptídeos/química , Peptídeos/metabolismo , Streptomyces/metabolismo , Uridina/química , Família Multigênica , Streptomyces/genética
12.
Chembiochem ; 11(12): 1700-9, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20665770

RESUMO

The pacidamycins are antimicrobial nucleoside antibiotics produced by Streptomyces coeruleorubidus that inhibit translocase I, an essential bacterial enzyme yet to be clinically targeted. The novel pacidamycin scaffold is composed of a pseudopeptide backbone linked by a unique exocyclic enamide to an atypical 3'-deoxyuridine nucleoside. In addition, the peptidyl chain undergoes a double inversion caused by the incorporation of a diamino acid residue and a rare internal ureido moiety. The pacidamycin gene cluster was identified and sequenced, thereby providing the first example of a biosynthetic cluster for a member of the uridyl peptide family of antibiotics. Analysis of the 22 ORFs provided an insight into the biosynthesis of the unique structural features of the pacidamycins. Heterologous expression in Streptomyces lividans resulted in the production of pacidamycin D and the newly identified pacidamycin S, thus confirming the identity of the pacidamycin biosynthetic gene cluster. Identification of this cluster will enable the generation of new uridyl peptide antibiotics through combinatorial biosynthesis. The concise cluster will provide a useful model system through which to gain a fundamental understanding of the way in which nonribosomal peptide synthetases interact.


Assuntos
Família Multigênica , Nucleosídeos de Pirimidina/biossíntese , Streptomyces/metabolismo , Sequência de Bases , Clonagem Molecular , DNA/química , DNA/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Reação em Cadeia da Polimerase , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/genética , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray , Streptomyces/química , Streptomyces/genética
13.
Org Biomol Chem ; 8(14): 3128-9, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20514371

RESUMO

Feeding phenylalanine analogues to Streptomyces coeruleorubidus reveals the remarkable steric and electronic flexibility of this biosynthetic pathway and leads to the generation of a series of new halopacidamycins.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Peptídeos/química , Peptídeos/metabolismo , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/metabolismo , Antibacterianos/metabolismo , Isomerismo , Nucleosídeos de Pirimidina/biossíntese , Streptomyces/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA