Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 48: 102091, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34417156

RESUMO

Ventilatory support, such as supplemental oxygen, used to save premature infants impairs the growth of the pulmonary microvasculature and distal alveoli, leading to bronchopulmonary dysplasia (BPD). Although lung cellular composition changes with exposure to hyperoxia in neonatal mice, most human BPD survivors are weaned off oxygen within the first weeks to months of life, yet they may have persistent lung injury and pulmonary dysfunction as adults. We hypothesized that early-life hyperoxia alters the cellular landscape in later life and predicts long-term lung injury. Using single-cell RNA sequencing, we mapped lung cell subpopulations at postnatal day (pnd)7 and pnd60 in mice exposed to hyperoxia (95% O2) for 3 days as neonates. We interrogated over 10,000 cells and identified a total of 45 clusters within 32 cell states. Neonatal hyperoxia caused persistent compositional changes in later life (pnd60) in all five type II cell states with unique signatures and function. Premature infants requiring mechanical ventilation with different durations also showed similar alterations in these unique signatures of type II cell states. Pathologically, neonatal hyperoxic exposure caused alveolar simplification in adult mice. We conclude that neonatal hyperoxia alters the lung cellular landscape in later life, uncovering neonatal programing of adult lung dysfunction.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Adulto , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Humanos , Recém-Nascido , Pulmão , Camundongos , Alvéolos Pulmonares , Transcriptoma
2.
Nat Commun ; 12(1): 3332, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099697

RESUMO

Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due to mutation lead to dysregulated protein expression and contribute to a substantial fraction of human disease. Several classes of splicing modulator compounds (SMCs) have been recently identified and establish that pre-mRNA splicing represents a target for therapy. We describe herein the identification of BPN-15477, a SMC that restores correct splicing of ELP1 exon 20. Using transcriptome sequencing from treated fibroblast cells and a machine learning approach, we identify BPN-15477 responsive sequence signatures. We then leverage this model to discover 155 human disease genes harboring ClinVar mutations predicted to alter pre-mRNA splicing as targets for BPN-15477. Splicing assays confirm successful correction of splicing defects caused by mutations in CFTR, LIPA, MLH1 and MAPT. Subsequent validations in two disease-relevant cellular models demonstrate that BPN-15477 increases functional protein, confirming the clinical potential of our predictions.


Assuntos
Aprendizado Profundo , Marcação de Genes/métodos , Splicing de RNA , Animais , Biologia Computacional , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Éxons , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Proteína 1 Homóloga a MutL/genética , Mutação , Fenetilaminas/administração & dosagem , Piridazinas/administração & dosagem , Esterol Esterase/genética , Transcriptoma , Proteínas tau/genética
3.
Database (Oxford) ; 20202020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33247936

RESUMO

Advances in tumor genome sequencing created an urgent need for bioinformatics tools to support the interpretation of the clinical significance of the variants detected. VarStack is a web tool which is a base to retrieve somatic variant data relating to cancer from existing databases. VarStack incorporates data from several publicly available databases and presents them with an easy-to-navigate user interface. It currently supports data from the Catalogue of Somatic Mutations in Cancer, gnomAD, cBioPortal, ClinVar, OncoKB, CiViC and UCSC Genome Browser. It retrieves the data from these databases and returns them back to the user in a fraction of the time it would take to manually navigate each site independently. Users submit a variant with a gene symbol, peptide change and coding sequence change. They may select a variety of tumor-specific studies in cBioPortal to search through in addition to their original query. The results from the databases are presented in tabs. Users can export the results as an Excel file. VarStack also has the batch search feature in which the user can submit a list of variants and download an Excel file with the data from the databases. With the batch search and data download options, users can easily incorporate VarStack into their workflow or tools. VarStack saves time by providing somatic variant information to the user from multiple databases in an easy-to-export and interpretable format. VarStack is freely available under https://varstack.brown.edu.


Assuntos
Neoplasias , Interface Usuário-Computador , Biologia Computacional , Bases de Dados Genéticas , Humanos , Armazenamento e Recuperação da Informação , Internet , Neoplasias/genética , Software
4.
Proc Natl Acad Sci U S A ; 111(42): E4468-77, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25294932

RESUMO

Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10(-8)) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10(-10)). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Axônios/metabolismo , Sítios de Ligação , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Cromatina/metabolismo , DNA Helicases/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma , Heterozigoto , Humanos , Megalencefalia/metabolismo , Mutação , Neoplasias/metabolismo , Neurônios/metabolismo , Ligação Proteica , Fatores de Risco , Análise de Sequência de RNA , Software , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA