Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 64(6): 1568-1581, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37013668

RESUMO

OBJECTIVE: Stereotactic laser amygdalohippocampotomy (SLAH) is an appealing option for patients with temporal lobe epilepsy, who often require intracranial monitoring to confirm mesial temporal seizure onset. However, given limited spatial sampling, it is possible that stereotactic electroencephalography (stereo-EEG) may miss seizure onset elsewhere. We hypothesized that stereo-EEG seizure onset patterns (SOPs) may differentiate between primary onset and secondary spread and predict postoperative seizure control. In this study, we characterized the 2-year outcomes of patients who underwent single-fiber SLAH after stereo-EEG and evaluated whether stereo-EEG SOPs predict postoperative seizure freedom. METHODS: This retrospective five-center study included patients with or without mesial temporal sclerosis (MTS) who underwent stereo-EEG followed by single-fiber SLAH between August 2014 and January 2022. Patients with causative hippocampal lesions apart from MTS or for whom the SLAH was considered palliative were excluded. An SOP catalogue was developed based on literature review. The dominant pattern for each patient was used for survival analysis. The primary outcome was 2-year Engel I classification or recurrent seizures before then, stratified by SOP category. RESULTS: Fifty-eight patients were included, with a mean follow-up duration of 39 ± 12 months after SLAH. Overall 1-, 2-, and 3-year Engel I seizure freedom probability was 54%, 36%, and 33%, respectively. Patients with SOPs, including low-voltage fast activity or low-frequency repetitive spiking, had a 46% 2-year seizure freedom probability, compared to 0% for patients with alpha or theta frequency repetitive spiking or theta or delta frequency rhythmic slowing (log-rank test, p = .00015). SIGNIFICANCE: Patients who underwent SLAH after stereo-EEG had a low probability of seizure freedom at 2 years, but SOPs successfully predicted seizure recurrence in a subset of patients. This study provides proof of concept that SOPs distinguish between hippocampal seizure onset and spread and supports using SOPs to improve selection of SLAH candidates.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/complicações , Convulsões/diagnóstico , Convulsões/cirurgia , Convulsões/complicações , Eletroencefalografia , Lasers , Imageamento por Ressonância Magnética
3.
J Neurosci Res ; 90(4): 849-59, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22420037

RESUMO

Nicotine in tobacco smoke is thought to stimulate sensory nerve fibers by receptors that are located on airway epithelial cells and on terminal branches of C-fiber afferents, but the exact neurochemical substrate that mediates the sensory effects of nicotine associated with cigarette smoking is not clear. ATP and nitric oxide (NO) have both been implicated in lung responsiveness to airborne chemicals such as nicotine. However, the neuroanatomical and functional relationships between nicotinic acetylcholine receptors (nAChRs), purinergic signaling, and NO are not known, and the main source of NO in the airways is not clear. In the present study, we performed RT-PCR to confirm the presence of mRNA for all three isoforms of nitric oxide synthase (NOS), neuronal (n-NOS), endothelial (e-NOS), and inducible (i-NOS), in the lung. Sequential double labeling was performed to assess the site of expression of the different NOS isoforms with respect to nAChRs and purinergic receptors (P2X3R) of the intrapulmonary airways. RT-PCR confirmed the presence of n-NOS, e-NOS, and i-NOS in the lung, and immunohistochemical studies verified their expression by epithelial cells at all levels of the intrapulmonary airways, including the terminal and respiratory bronchioles. Sequential double labeling demonstrated coexpression of n-NOS and/or i-NOS with nAChR- and P2X3R-expressing cells. These neuroanatomical findings suggest that bronchial epithelial cells may be a primary source of NO in the intrapulmonary airways and that the production and release of NO may be regulated by an autocrine/paracrine signaling system involving nAChRs and P2X3Rs.


Assuntos
Comunicação Autócrina/fisiologia , Óxido Nítrico Sintase/metabolismo , Comunicação Parácrina/fisiologia , Receptores Nicotínicos/metabolismo , Receptores Purinérgicos/metabolismo , Sistema Respiratório/metabolismo , Animais , Células Epiteliais/metabolismo , Óxido Nítrico Sintase/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/genética , Receptores Purinérgicos/genética , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Sistema Respiratório/citologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA