Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 2): 128452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042321

RESUMO

Cancer is a devastating disease that causes a substantial number of deaths worldwide. Current therapeutic interventions for cancer include chemotherapy, radiation therapy, or surgery. These conventional therapeutic approaches are associated with disadvantages such as multidrug resistance, destruction of healthy tissues, and tissue toxicity. Therefore, there is a paradigm shift in cancer management wherein nanomedicine-based novel therapeutic interventions are being explored to overcome the aforementioned disadvantages. Supramolecular self-assembled peptide nanofibers are emerging drug delivery vehicles that have gained much attention in cancer management owing to their biocompatibility, biodegradability, biomimetic property, stimuli-responsiveness, transformability, and inherent therapeutic property. Supramolecules form well-organized structures via non-covalent linkages, the intricate molecular arrangement helps to improve tissue permeation, pharmacokinetic profile and chemical stability of therapeutic agents while enabling targeted delivery and allowing efficient tumor imaging. In this review, we present fundamental aspects of peptide-based self-assembled nanofiber fabrication their applications in monotherapy/combinatorial chemo- and/or immuno-therapy to overcome multi-drug resistance. The role of self-assembled structures in targeted/stimuli-responsive (pH, enzyme and photo-responsive) drug delivery has been discussed along with the case studies. Further, recent advancements in peptide nanofibers in cancer diagnosis, imaging, gene therapy, and immune therapy along with regulatory obstacles towards clinical translation have been deliberated.


Assuntos
Nanofibras , Neoplasias , Humanos , Nanofibras/química , Peptídeos/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Imunidade Celular
2.
Life Sci ; 331: 122021, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582468

RESUMO

Cancer is the leading cause of death across the globe, with 19.3 million new cancer cases and 10 million deaths in the year 2020. Conventional treatment modalities have numerous pitfalls, such as off-site cytotoxicity and poor bioavailability. Nanocarriers (NCs) have been explored to deliver various therapeutic moieties such as chemotherapeutic agents and photothermal agents, etc. However, several limitations, such as rapid clearance by the reticuloendothelial system, poor extravasation into the tumor microenvironment, and low systemic half-life are roadblocks to successful clinical translation. To circumvent the pitfalls of currently available treatment modalities, neutrophil membrane (NM)-based nanotherapeutics have emerged as a promising platform for cancer management. Their versatile features such as natural tumor tropism, tumor-specific accumulation, and prevention from rapid clearance owing to their autologous nature make them an effective anticancer NCs. In this manuscript, we have discussed various methods for isolation, coating and characterization of NM. We have discussed the role of NM-coated nanotherapeutics as neoadjuvant and adjuvant in different treatment modalities, such as chemotherapy, photothermal and photodynamic therapies with rationales behind their inclusion. Clinical hurdles faced during the bench-to-bedside translation with possible solutions have been discussed. We believe that in the upcoming years, NM-coated nanotherapeutics will open a new horizon in cancer management.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neutrófilos/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
3.
Int J Pharm ; 643: 123278, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37516214

RESUMO

Oral drug delivery of microparticles demonstrates shortcomings like aggregation, decreased loading capacity and batch-to-batch variation, which limits its scale-up. Later, porous structures gained attention because of their large surface-to-volume ratio, high loading capacity and ability to carry biomacromolecules, which undergo degradation in GIT. But there are pitfalls like non-uniform particle size distribution, the impact of porogen properties, and harsh chemicals. To circumvent these drawbacks, natural carriers like pollen are explored in drug delivery, which withstands harsh environments. This property helps to subdue the acid-sensitive drug in GIT. It shows uniform particle size distribution within the species. On the other side, they contain phytoconstituents like flavonoids and polysaccharides, which possess various pharmacological applications. Therefore, pollen has the capability as a carrier system and therapeutic agent. This review focuses on pollen's microstructure, composition and utility in cancer management. The extraction strategies, characterisation techniques and chemical structure of sporopollenin exine capsule, its use in the oral delivery of antineoplastic drugs, and emerging cancer treatments like photothermal therapy, immunotherapy and microrobots have been highlighted. We have mentioned a note on the anticancer activity of pollen extract. Further, we have summarised the regulatory perspective, bottlenecks and way forward associated with pollen.


Assuntos
Neoplasias , Pólen , Pólen/química , Biopolímeros/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
4.
Int J Biol Macromol ; 234: 123669, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796555

RESUMO

Ulvans are water-soluble sulfated polysaccharides predominantly found in the cell wall of green algae. They hold unique characteristics that are attributed to their 3D conformation, functional groups along with the presence of saccharides and sulfate ions. Traditionally, ulvans are widely used as food supplements and probiotics owing to the high content of carbohydrates. Despite their widespread usage in food industry, an in-depth understanding is required for extrapolating their potential application as a nutraceutical and medicinal agent which could be beneficial in promoting human health and well-being. This review emphasizes novel therapeutic avenues where ulvan polysaccharides can be used beyond their nutritional applications. A collection of literature points towards multifarious applications of ulvan in various biomedical fields. Structural aspects along with extraction and purification methods have been discussed. The underlying molecular mechanisms associated with its biomedical potential in different therapeutic fields like oncology, infectious diseases, inflammation, neuroprotection and tissue engineering, etc. have been unravelled. Challenges associated with clinical translation and future perspectives have been deliberated.


Assuntos
Produtos Biológicos , Polissacarídeos , Animais , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Clorófitas/química , Suplementos Nutricionais , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Neoplasias/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Infecções/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ciência Translacional Biomédica , Anticoagulantes/farmacologia , Engenharia Tecidual , Regeneração/efeitos dos fármacos
5.
Life Sci ; 312: 121257, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462722

RESUMO

Rheumatoid arthritis (RA) is a chronic, prevalent, immune-mediated, inflammatory, joint disorder affecting millions of people worldwide. Despite current treatment options, many patients remain unable to achieve remission and suffer from comorbidities. Because of several comorbidities as well as its chronic nature, it diminishes the quality of patients' life and intensifies socioeconomic cargo. Consolidating peptides with immensely effective drug delivery systems has the ability to alleviate adverse effects associated with conventional treatments. Peptides are widely used as targeting moieties for the delivery of nanotherapeutics. The use of novel peptide-based nanotherapeutics may open up new avenues for improving efficacy by promoting drug accumulation in inflamed joints and reducing off-target cytotoxicity. Peptide therapeutics have grabbed significant attention due to their advantages over small drug molecules as well as complex targeting moieties. In light of this, the market for peptide-based medications is growing exponentially. Peptides can provide the versatility required for the successful delivery of drugs due to their structural diversity and their capability to lead drugs at the site of inflammation while maintaining optimum therapeutic efficacy. This comprehensive review aims to provide an enhanced understanding of recent advancements in the arena of peptide-based nanotherapeutics to strengthen targeted delivery for the effective management of rheumatoid arthritis. Additionally, various peptides having therapeutic roles in rheumatoid arthritis are summarized along with regulatory considerations for peptides.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Sistemas de Liberação de Medicamentos
6.
Life Sci ; 310: 121125, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306868

RESUMO

Chemotherapy is an important tool for the management of solid tumors including breast cancers (BC). Its neo-adjuvant and adjuvant use is important for shrinking tumor size and neutralizing the disseminated cancer cells. Initial chemotherapy administration often leads to a reduction in tumor size and pathological complete response. However, chemotherapy-induced tumor-free survival is not durable in BC patients. Chemotherapy is the prominent treatment for the management of triple-negative BC (TNBC), the most aggressive subtype of the BC. Various factors such as the emergence of multidrug resistance (MDR), the appearance of dormant and tolerant clones, and remodeling of the tumor microenvironment (TME) in response to chemotherapy-induced stress are responsible for tumor relapse. In current review, the authors have highlighted various cytokines and growth factors, and underlying signaling pathways such as NF-κB and PI3k/AkT, responsible for the emergence of chemo-resistance and metastasis in the TME. The present review potentially explores the role of epithelial-mesenchymal transition (EMT) in eliciting metastasis and providing stem-like phenotypes to the BC cells. The appearance of drug-tolerant sub-populations such as persister cells and BC stem cells has been discussed with mechanistic pathways. Through the current review, authors have significantly explained the mechanistic pathways of the chemotherapy-induced transformation of the tumor microenvironment (TME) constituents responsible for tumor progression. Potential therapeutic targets have been highlighted.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Fosfatidilinositol 3-Quinases , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Transição Epitelial-Mesenquimal , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Microambiente Tumoral
7.
Mol Pharm ; 19(12): 4428-4452, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36109099

RESUMO

The global menace of cancer has led to an increased death toll in recent years. The constant evolution of cancer therapeutics with novel delivery systems has paved the way for translation of innovative therapeutics from bench to bedside. This review explains the significance of mesoporous silica nanoparticles (MSNs) as delivery vehicles with particular emphasis on cancer therapy, including novel opportunities for biomimetic therapeutics and vaccine delivery. Parameters governing MSN synthesis, therapeutic agent loading characteristics, along with tuning of MSN toward cancer cell specificity have been explained. The advent of MSN in nanotheranostics and its potential in forming nanocomposites for imaging purposes have been illustrated. Additionally, various hurdles encountered during the bench to bedside translation have been explained along with potential avenues to circumvent them. This also opens up new horizons in drug delivery, which could be useful to researchers in the years to come.


Assuntos
Nanocompostos , Nanopartículas , Neoplasias , Humanos , Dióxido de Silício , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA