Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 307: 107193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320409

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a moonlighting enzyme. Apart from its primary role in the glycolytic pathway, in many bacterial species it is found in the extracellular milieu and also on the bacterial surface. Positioning on the bacterial surface allows the GAPDH molecule to interact with many host molecules such as plasminogen, fibrinogen, fibronectin, laminin and mucin etc. This facilitates the bacterial colonization of the host. Helicobacter pylori is a major human pathogen that causes a number of gastrointestinal infections and is the main cause of gastric cancer. The binding analysis of H. pylori GAPDH (HpGAPDH) with host molecules has not been carried out. Hence, we studied the interaction of HpGAPDH with holo-transferrin, lactoferrin, haemoglobin, fibrinogen, fibronectin, catalase, plasminogen and mucin using biolayer interferometry. Highest and lowest binding affinity was observed with lactoferrin (4.83 ± 0.70 × 10-9 M) and holo-transferrin (4.27 ± 2.39 × 10-5 M). Previous studies established GAPDH as a heme chaperone involved in intracellular heme trafficking and delivery to downstream target proteins. Therefore, to get insights into heme binding, the interaction between HpGAPDH and hemin was analyzed. Hemin binds to HpGAPDH with an affinity of 2.10 µM while the hemin bound HpGAPDH does not exhibit activity. This suggests that hemin most likely binds at the active site of HpGAPDH, prohibiting substrate binding. Blind docking of hemin with HpGAPDH also supports positioning of hemin at the active site. Metal ions were found to inhibit the activity of HpGAPDH, suggesting that it also possibly occupies the substrate binding site. Furthermore, with metal-bound HpGAPDH, hemin binding was not observed, suggesting metal ions act as an inhibitor of hemin binding. Since GAPDH has been identified as a heme chaperone, it will be interesting to analyse the biological consequences of inhibition of heme binding to GAPDH by metal ions.


Assuntos
Helicobacter pylori , Hemina , Humanos , Hemina/metabolismo , Helicobacter pylori/metabolismo , Fibronectinas/metabolismo , Lactoferrina/metabolismo , Ligação Proteica , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Heme/metabolismo , Fibrinogênio , Plasminogênio/metabolismo , Íons/metabolismo , Mucinas/metabolismo
2.
J Biomol Struct Dyn ; 40(14): 6272-6285, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33554755

RESUMO

Alternate sigma factors play a major role in the survival of pathogenic bacteria such as Streptococcus pyogenes in adverse environment conditions. Stress induced sigma factors mediate gene expression under conditions of pathogenesis, dormancy and unusual environmental cues. In the present work, ComX, an alternate sigma factor from S. pyogenes has been characterized. The structures of ComX, RpoB ß subunit and RpoC ß' subunit of RNA polymerase have been predicted using comparative and homology modelling respectively and validated. Attempts have been made to study RpoB-RpoC-ComX complex interactions with Double Strand (DS) and Single Strand (SS) promoter regions. Stability of these complexes and the promoter melting mechanism have been analysed using Molecular Dynamic (MD) simulations. This study suggests that ComX, although identifies promoter analogous to the alternate sigma factor SigH of M. tuberculosis, follows a distinctive promoter flip out mechanism.Communicated by Ramaswamy H. Sarma.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Streptococcus pyogenes/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas , Fator sigma/química , Fator sigma/genética , Streptococcus pyogenes/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Biochem Biophys Res Commun ; 420(3): 692-7, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22452987

RESUMO

The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92Šresolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability.


Assuntos
Fosfotransferases (Aceptor do Grupo Carboxila)/química , Thermus thermophilus/enzimologia , Arginina/química , Arginina/farmacologia , Domínio Catalítico , Estabilidade Enzimática , Retroalimentação Fisiológica , Temperatura Alta , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
4.
Biochem Biophys Res Commun ; 375(1): 124-8, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18691556

RESUMO

The crystal structure of a hypothetical protein ST2348 (GI: 47118305) from the hyperthermophilic bacteria Sulfolobus tokodaii has been determined using X-ray crystallography. The protein consists of two CBS (cystathione beta synthase) domains, whose function has been analyzed and reported here. PSI-BLAST shows a conservation of this domain in about 100 proteins in various species. However, none of the close homologs of ST2348 have been functionally characterized so far. Structure and sequence comparison of ST2348 with human AMP-kinase gamma1 subunit and the CBS domain pair of bacterial IMP dehydrogenase is suggestive of its binding to AMP and ATP. A highly conserved residue Asp118, located in a negatively charged patch near the ligand binding cleft, could serve as a site for phosphorylation similar to that found in the chemotatic signal protein CheY and thereby ST2348 can function as a signal transduction molecule.


Assuntos
Proteínas Arqueais/química , Temperatura Alta , Sulfolobus/enzimologia , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Cistationina beta-Sintase/química , Humanos , Dobramento de Proteína , Estrutura Terciária de Proteína
5.
J Biomol Struct Dyn ; 25(2): 183-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17718597

RESUMO

Leptin, the ob gene product, is a 167 amino acid polypeptide known to play a key role in regulating the fat stores of the body and is found in all eukaryotes, including mammals, aves, and also in invertebrates. To gain insight into the structure-function relation and origin of leptin, we have analyzed the amino acid sequence of leptin from 23 species by computing the frequency of occurrence of amino acids, their secondary structure, sequence homology, et cetera. Extensive conservation is observed within the leptin sequences of all the species, suggesting an evolutionary relatedness among them. It is interesting to note that human leptin shares a very high degree of homology with gorilla, chimpanzee, and orangutan indicative of a common function of leptin in them. Analysis of the codon bias in leptin from 11 species reveals that sminthopsis shows highest variation compared to human while less variation is observed in chimpanzee and orangutan, possibly reflecting the closeness in their evolution. Thus, understanding leptin's three-dimensional structure along with primary and secondary structure might enable us to understand the functional role played by this multifaceted adipocyte derived protein.


Assuntos
Leptina , Sequência de Aminoácidos , Animais , Evolução Molecular , Humanos , Leptina/química , Leptina/genética , Leptina/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA