Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Stem Cell Res Ther ; 19(3): 351-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37073662

RESUMO

Exosomes are extracellular vesicles (EVs) that originate from endocytic membranes. The transfer of biomolecules and biological compounds such as enzymes, proteins, RNA, lipids, and cellular waste disposal through exosomes plays an essential function in cell-cell communication and regulation of pathological and physiological processes in skin disease. The skin is one of the vital organs that makes up about 8% of the total body mass. This organ consists of three layers, epidermis, dermis, and hypodermis that cover the outer surface of the body. Heterogeneity and endogeneity of exosomes is an advantage that distinguishes them from nanoparticles and liposomes and leads to their widespread usage in the remedy of dermal diseases. The biocompatible nature of these extracellular vesicles has attracted the attention of many health researchers. In this review article, we will first discuss the biogenesis of exosomes, their contents, separation methods, and the advantages and disadvantages of exosomes. Then we will highlight recent developments related to the therapeutic applications of exosomes in the treatment of common skin disorders like atopic dermatitis, alopecia, epidermolysis bullosa, keloid, melanoma, psoriasis, and systemic sclerosis.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Pele , Comunicação Celular , RNA
2.
Iran Biomed J ; 27(5): 269-79, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873643

RESUMO

Background: CD20 is a differentiation-related antigen exclusively expressed on the membrane of B lymphocytes. CD20 amplification is observed in numerous immune-related disorders, making it an ideal target for immunotherapy of hematological malignancies and autoimmune diseases. MAb-based therapies targeting CD20 have a principal role in the treatment of several immune-related disordes and cancers, including CLL. Fc gamma receptors mediate CD20 internalization in hematopoietic cells; therefore, this study aimed to establish non-hematopoietic stable cell lines overexpressing full-length human CD20 antigen as an in vitro model for CD20-related studies. Methods: CD20 gene was cloned into the transfer vector. The lentivirus system was transfected to packaging HEK 293T cells, and the supernatants were harvested. CHO-K1 cells were transduced using recombinant viruses, and a stable cell pool was developed by the antibiotic selection. CD20 expression was confirmed at the mRNA and protein levels. Results: Simultaneous expression of GFP protein facilitated the detection of CD20-expressing cells. Immunophenotyping analysis of stable clones demonstrated expression of CD20 antigen. In addition, the mean fluorescence intensity was significantly higher in the CD20-CHO-K1 clones than the wild-type CHO-K1 cells. Conclusion: This study is the first report on using second-generation lentiviral vectors for the establishment of a non-hematopoietic cell-based system, which stably expresses full-length human CD20 antigen. Results of stable CHO cell lines with different levels of CD20 antigen are well suited to be used for CD20-based investigations, including binding and functional assays.


Assuntos
Antígenos CD20 , Vetores Genéticos , Cricetinae , Animais , Humanos , Antígenos CD20/genética , Células CHO , Cricetulus , Vetores Genéticos/genética
3.
Biomed Pharmacother ; 167: 115505, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716113

RESUMO

Mesenchymal stem cells (MSCs), as self-renewing multipotent stromal cells, have been considered promising agents for cancer treatment. A large number of studies have demonstrated the valuable properties of MSC-based treatment, such as low immunogenicity and intrinsic tumor-trophic migratory properties. To enhance the potency of MSCs for therapeutic purposes, equipping MSCs with targeted delivery functions using genetic engineering is highly beneficial. Genetically engineered MSCs can express tumor suppressor agents such as pro-apoptotic, anti-proliferative, anti-angiogenic factors and act as ideal delivery vehicles. MSCs can also be loaded with nanoparticle drugs for increased efficacy and externally moderated targeting. Moreover, exosomes secreted by MSCs have important physiological properties, so they can contribute to intercellular communication and transfer cargo into targeted tumor cells. The precise role of genetically modified MSCs in tumor environments is still up for debate, but the beginning of clinical trials has been confirmed by promising results from preclinical investigations of MSC-based gene therapy for a wide range of malignancies. This review highlights the advanced techniques of engineering/nano-engineering and MSC-derived exosomes in tumor-targeted therapy.

4.
Monoclon Antib Immunodiagn Immunother ; 42(4): 140-144, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37624609

RESUMO

During the past decades, tremendous advances have occurred in manufacturing recombinant therapeutic proteins in Chinese hamster ovary (CHO) cells. Nevertheless, the production of stable high-producing cell lines has remained a major obstacle in the development process of the CHO cell line. It has been shown that genomic regulatory elements can promote cell line development efficiency by improving transgenes' productivity and stability. Such elements include insulators, ubiquitous chromatin opening elements, scaffold/matrix attachment regions, and antirepressors. In addition, tDNA elements are shown to act as insulators in mammalian cells. This study examines the effect of the tDNA insulator on stable expression of a vascular endothelial growth factor receptor-Fc fusion protein.


Assuntos
Elementos Isolantes , Fator A de Crescimento do Endotélio Vascular , Animais , Cricetinae , Células CHO , Cricetulus , Anticorpos Monoclonais , Receptores de Fatores de Crescimento do Endotélio Vascular
5.
Cell Biochem Funct ; 41(4): 434-449, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017290

RESUMO

Despite significant advancements in tissue engineering and regenerative medicine during the last two decades, the fabrication of proper scaffolds with appropriate cells can still be considered a critical achievement in this field. Hypoxia is a major stumbling block to chronic wound healing, which restrains tissue engineering plans because a lack of oxygen may cause cell death. This study evaluated the cocultured human keratinocytes and human adipose-derived mesenchymal stem cells (AMSCs) on a multilayer oxygen-releasing electrospun scaffold based on PU/PCL.Sodium percarbonate (SPC)-gelatin/PU. The scaffold was characterized using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) methods. Flow cytometry confirmed mesenchymal stem cells, and then the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay and DAPI staining were used to assess the in vitro biocompatibility of the scaffold. The experimental results showed that the multilayer electrospun scaffold containing 2.5% SPC could efficiently produce oxygen. Furthermore, according to cell viability results, this structure makes a suitable substrate for the coculture of keratinocytes and AMSCs. Gene expression analysis of various markers such as Involucrin, Cytokeratin 10, and Cytokeratin 14 after 14 days confirmed that keratinocytes and AMSCs coculture on PU/PCL.SPC-gelatin/PU electrospun scaffold promotes dermal differentiation and epithelial proliferation compared to keratinocytes single-cell culture. Therefore, our study supports using oxygen-releasing scaffolds as a potential strategy to hasten skin tissue regeneration. Based on the results, this structure is suggested as a promising candidate for cell-based skin tissue engineering. Given that the developed oxygen-generating polymeric electrospun scaffolds could be used as part of a future strategy for skin tissue engineering, the PU/PCL.SPC-gelatin/PU hybrid electrospun multilayer scaffold in combination with keratinocyte/AMSC coculture is proposed as an effective substrate for skin tissue engineering and regenerative medicine platforms.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Masculino , Humanos , Técnicas de Cocultura , Alicerces Teciduais/química , Gelatina/metabolismo , Prepúcio do Pênis , Oxigênio/farmacologia , Oxigênio/metabolismo , Queratinócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo
6.
Prep Biochem Biotechnol ; 53(3): 239-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35579623

RESUMO

Several monoclonal antibodies targeting the CD20 have been produced and Ofatumumab is a case in point. Although whole antibodies target cancer cells effectively, their applications are restricted in some ways. Single-chain fragment variable antibodies, rather than employing the entire structure of antibodies, have proven a practical approach for creating completely functional antigen-binding fragments. In current research, the DNA coding sequence of VL and VH of the wild and mutant forms of ofatumumab were joined with a flexible linker (GGGGS)3 separately. Using the E. coli BL21 (DE3) expression system, the VL-linker-VH genes were cloned into the pET-28 a (+), and the associated recombinant proteins were produced. Purified and refolded scFvs (scFv-C and scFv-V3) represented a concentration of around 0.7 mg/ml from 1 L of initial E. coli culture with a molecular weight of about 27 kDa. Affinity measurement disclosed anti-CD20 scFv-V3 possesses a higher affinity constant compared to anti-CD20 scFv-C. The recombinant scFvs exclusively attach to Raji cells but not to Jurkat cells, according to a cell-ELISA analysis. The MTT test signified anti-CD20 scFvs could affect cell viability in Raji cells but had no impact on Jurkat cells and also, Raji cells viability was affected more significantly by anti-CD20 scFv-V3.


Assuntos
Antígenos CD20 , Anticorpos de Cadeia Única , Humanos , Antígenos CD20/genética , Antígenos CD20/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos de Cadeia Única/genética
7.
Sci Rep ; 12(1): 18529, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323953

RESUMO

Fibroblasts are the main cells of connective tissue and have pivotal roles in the proliferative and maturation phases of wound healing. These cells can secrete various cytokines, growth factors, and collagen. Vascular endothelial growth factor (VEGF) is a unique factor in the migration process of fibroblast cells through induces wound healing cascade components such as angiogenesis, collagen deposition, and epithelialization. This study aimed to create VEGF165 overexpressing fibroblast cells to evaluate angiogenesis function in wound healing. In vitro, a novel recombinant expression vector, pcDNA3.1(-)-VEGF, was produced and transfected into the fibroblast cells. Following selecting fibroblast cells with hygromycin, recombinant cells were investigated in terms of VEGF expression by quantifying and qualifying methods. Mechanical, physical, and survival properties of polyurethane-cellulose acetate (PU-CA) scaffold were investigated. Finally, in vivo, the angiogenic potential was evaluated in four groups containing control, PU-CA, PU-CA with fibroblast cells, and VEGF-expressing cells on days 0, 2, 5, 12 and 15. Wound biopsies were harvested and the healing process was histopathologically evaluated on different days. qRT-PCR showed VEGF overexpression (sevenfold) in genetically-manipulated cells compared to fibroblast cells. Recombinant VEGF expression was also confirmed by western blotting. Manipulated fibroblast cells represented more angiogenesis than other groups on the second day after surgery, which was also confirmed by the antiCD31 antibody. The percentage of wound closure area on day 5 in genetically-manipulated Hu02 and Hu02 groups showed a significant reduction of wound area compared to other groups. These findings indicate that overexpression of VEGF165 in fibroblast cells results in enhanced angiogenesis and formation of granulated tissue in the early stage of the healing process, which can show its therapeutic potential in patients with impaired wound healing and also provide functional support for gene therapy.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Cicatrização , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética , Fatores de Crescimento do Endotélio Vascular , Neovascularização Patológica/tratamento farmacológico , Colágeno/metabolismo , Fibroblastos/metabolismo , Neovascularização Fisiológica/genética
8.
Iran J Public Health ; 51(5): 1084-1096, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36407731

RESUMO

Background: Medullary Thyroid Cancer (MTC) is a very aggressive type of thyroid carcinoma. Mutation in RET proto-oncogene is demonstrated in MTC development. We aimed to knock-out of RET-oncogene using CRISPR/Cas9 genome editing method in MTC cell-lines. Methods: This research was conducted in Shahid Beheshti University of Medical Sciences, Tehran, Iran during 2019-2020. Four different sgRNAs were designed to target exons one, two, and four of RET-oncogene in TT and MZ-CRC-1 cell-lines using bioinformatics tools, then the CRISPR/Cas9 constructs was made. About 72-hours after cell transfection, T7EI method and DNA sequencing were used to confirm the knock-out of RET-oncogene. Expression of RET, Calcitonin genes and RET protein were evaluated by Real-time PCR and ELISA, respectively. Results: The results of T7E1, and DNA sequencing of transfected cells confirmed RET gene knock-out by CRISPR/Cas9. There was a significant decrease in RET gene expression and RET protein in transfected TT and MZ cells compared to controls. The rate of cell apoptosis in transfected cells was significantly increased. Calcitonin gene expression was also significantly reduced in transfected cells. p-RET, p-PI3K, p-AKT, p-MEK, p-ERK protein levels were significantly reduced in TT and MZ transfected cells. Conclusion: For the first time, knock-out of RET gene was performed and confirmed using CRISPR/Cas9. Inhibition of this gene leads to inhibition of the tyrosine kinase RET signal transduction pathway. Therefore, it can be one of the most effective and specific therapeutic goals in the field of Personalized Medicine in the treatment of diseases caused by over activity of RET molecular pathway.

9.
Drug Metab Rev ; 54(4): 386-400, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031813

RESUMO

Anti-angiogenic therapy is a practical approach to managing diseases with increased angiogenesis, such as cancer, maculopathies, and retinopathies. Considering the fundamental gaps in the knowledge of the vital pathways involved in angiogenesis and its inhibition and the insufficient efficiency of existing angiogenesis inhibitors, there is an increasing focus on the emergence of new therapeutic strategies aimed at inhibiting pathological angiogenesis. Angiogenesis is forming a new vascular network from existing vessels; endothelial cells (ECs), vascular lining cells, are the main actors of angiogenesis in physiological or pathological conditions. Switching from a quiescent state to a highly migratory and proliferative state during new vessel formation called "angiogenic switch" is driven by a "metabolic switch" in ECs, angiogenic growth factors, and other signals. As the characteristics of ECs change by altering the surrounding environment, they appear to have a different metabolism in a tumor microenvironment (TME). Therefore, pathological angiogenesis can be inhibited by targeting metabolic pathways. In the current review, we aim to discuss the EC metabolic pathways under normal and TME conditions to verify the suitability of targeting them with novel therapies.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Microambiente Tumoral
10.
Int Immunopharmacol ; 99: 107966, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34315113

RESUMO

BACKGROUND: This study investigated the potential of simultaneous overexpression of A20 and B- and T-lymphocyte attenuator (BTLA) genes in dendritic cells (DCs) to develop a tolerogenic phenotype in DCs and investigate their capabilities for induction of immunosuppression. METHODS: Plasmid vectors were designed harboring A20, BTLA, and A20 + BTLA genes and were transfected to HEK 293T cells to produce lentiviruses. DCs were transduced by the gene carrying viruses and evaluated for the surface expression of MHCII, CD40, and CD86 molecules by flow-cytometry. The mRNA expression of A20, BTLA, and CCR7 were determined. Mixed-lymphocyte reaction was conducted to evaluate the T cell stimulation potency and ELISA was used to measure the production of IL-10, TGF-ß, and TNF-α. The potential of DCs for migration to lymph nodes and Treg induction were assessed by in vivo experiments. RESULTS: Transduction of DCs resulted in significantly decreased surface expression of CD40 and CD86 co-stimulators and upregulated A20, BTLA, and CCR7 mRNA expression. The IL-10 and TGF-ß levels were enhanced significantly in the supernatant of LPS-treated DCs transduced with A20 + BTLA-containing virus group relative to the DCs transduced with pCDH vectors. DCs transduced with A20 + BTLA harboring vectors had higher migratory potential to mouse lymph nodes and caused the development of higher numbers of Treg cells compared with the DCs transduced with pCDH vectors. CONCLUSIONS: Simultaneous overexpression of A20 and BTLA genes in DCs caused development of tolerogenic DCs with a promoted potential in induction of Treg cells, accompanied by remarkable stability after inflammatory stimulation. All these offer a promising potential of such DCs in treating autoimmune and inflammatory disorders.


Assuntos
Células Dendríticas/fisiologia , Receptores Imunológicos/genética , Linfócitos T Reguladores/fisiologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Animais , Citocinas/biossíntese , Células HEK293 , Humanos , Tolerância Imunológica , Linfonodos , Ativação Linfocitária , Teste de Cultura Mista de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Receptores CCR7/genética , Transdução de Sinais
11.
J Cell Biochem ; 120(1): 940-950, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160776

RESUMO

CD20 molecule, a phosphoprotein with 297 amino acids and four transmembrane domains, is a member of MS4A protein family. Anti-CD20 antibodies such as ofatumumab, which have been developed for cancer treatment and has demonstrated efficacy in relapsed/refractory chronic lymphocytic leukemia, are among the most successful therapies to date. Rational engineering methods can be applied with reasonable success to improve functional characteristics of antibodies. Considering the importance of this issue, we have used in silico modeling approach for the improvement of ofatumumab monoclonal antibody. Four mutated variants of ofatumumab were developed and expressed in Chinese hamster ovary (CHO) cells along with the unmodified antibody. Analysis of affinity of the purified antibodies with CD20 showed significant improvement in antigen-binding characteristics of one of the variants compared with the control antibody. This study represents the first step toward development of the second generation ofatumumab antibody with improved affinity.


Assuntos
Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/imunologia , Afinidade de Anticorpos/imunologia , Antígenos CD20/imunologia , Desenho de Fármacos , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD20/química , Linfócitos B/imunologia , Células CHO , Cricetulus , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Cinética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Mutantes , Mutação , Plasmídeos/genética , Plasmídeos/imunologia , Ressonância de Plasmônio de Superfície , Transfecção
12.
Biomed Pharmacother ; 109: 2415-2426, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551501

RESUMO

B-lymphocyte antigen CD20 (called CD20) is known as an activated-glycosylated phosphoprotein which is expressed on the surface of all B-cells. CD20 is involved in the regulation of trans-membrane Ca2+ conductance and also play critical roles in cell-cycle progression during human B cell proliferation and activation. The appearance of monoclonal antibody (mAb) technology provided an effective field for targeted therapy in treatment of a variety of diseases such as cancer, and autoimmune diseases. Anti-CD20 is one of important antibodies which could be employed in treatment of several diseases. Increasing evidences revealed that efficacy of different anti-CD20 antibodies is implicated by their function. Hence, evaluation of anti-CD20 antibodies function could provide and introduce new anti-CD20 based therapies. In the present study, we summarized several applications of anti-CD20 antibodies in various immune related disorders including B-CLL (B-cell chronic lymphocytic leukemia), rheumatoid arthritis (RA), multiple sclerosis (MS) and melanoma.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos CD20/metabolismo , Doenças Autoimunes/metabolismo , Linfócitos B/metabolismo , Neoplasias/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD20/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Resultado do Tratamento
13.
In Vitro Cell Dev Biol Anim ; 54(2): 85-91, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29305748

RESUMO

Breast cancer with more than 1.7 million diagnoses per year has been known as one of the most prevalent cancers among women worldwide. Despite the availability of advanced treatment options, cancer progression and metastasis is observed in 20% of patients. Human epidermal growth factor receptor-2 (HER-2) is considered as an important prognostic and diagnostic tumor marker for breast cancer. While HER-2 is expressed on the surface of normal cells, its overexpression occurs in 20-25% on breast cancer tumor cells. This type of tumor which is referred to as HER-2+ is the most aggressive type of breast cancer and shows more resistance to radiotherapy. Single-chain fragment antibodies (ScFvs) offer several advantages in comparison to conventional whole antibodies due to their small size. Particularly, ScFv fragments show improved diffusion and solid tumor penetration. In this study, a human ScFv antibody library was used to isolate anti-HER-2 ScFv antibodies through cell panning and mix antigen-cell panning strategies. Analysis of the binding activity and specificity of isolated ScFv antibodies against HER-2-expressing cell lines and recombinant HER-2 antigen indicated the higher efficiency of the cell panning strategy in isolation of ScFv antibody fragments.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Receptor ErbB-2/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/isolamento & purificação , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Neoplasias da Mama , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Engenharia de Proteínas/métodos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo
14.
Iran Biomed J ; 22(3): 180-92, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992681

RESUMO

Background: Ofatumumab, an anti-CD20 mAb, was approved in 2009 for the treatment of chronic lymphocytic leukemia. This mAb acts through immune-mediated mechanisms, in particular complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by natural killer cells as well as antibody-dependent phagocytosis by macrophages. Apoptosis induction is another mechanism of this antibody. Computational docking is the method of predicting the conformation of an antibody-antigen from its separated elements. Validation of the designed antibodies is carried out by docking tools. Increased affinity enhances the biological action of the antibody, which in turn improves the therapeutic effects. Furthermore, the increased antibody affinity can reduce the therapeutic dose of the antibody, resulting in lower toxicity and handling cost. Methods: Considering the importance of this issue, using in silico analysis such as docking and molecular dynamics, we aimed to find the important amino acids of the Ofatumumab antibody and then replaced these amino acids with others to improve antibody-binding affinity. Finally, we examined the binding affinity of antibody variants to antigen. Results: Our findings showed that variant 3 mutations have improved the characteristics of antibody binding compared to normal Ofatumumab antibodies. Conclusion: In the present study, the designed anti-CD20 antibodies showed to have potential for improved affinity compared to commercial Ofatumumab.

15.
Iran J Immunol ; 10(4): 247-58, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24375066

RESUMO

BACKGROUND: Single domain antibodies from camel heavy chain antibodies (VHH or nanobody), are advantages due to higher solubility, stability, high homology with human antibody, lower immunogenicity and low molecular weight. These criteria make them candidates for production of engineered antibody fragments particularly in transgenic animals. OBJECTIVE: To study the development of transgenic chicken using a recombinant retrovirus containing fluonanobody. METHODS: The retrovirus constructs containing nanobody genes along with secretory signals and GFP gene were established and packed. The virus particle containing the obtained fusion gene was injected into the eggs in stage X. Molecular detection and protein analysis was done in the G0 chickens. RESULTS: The rate of hatched chicken after gene manipulation was estimated to be about 33%. Real-Time PCR assay showed that the nanobody along with GFP gene were integrated in cells of 1.2% of chickens. CONCLUSION: We conclude that although the rate of gene transfer by recombinant viruses in chickens is low, it would be possible to transfect the target camel immunoglobulin gene into chicken genome.


Assuntos
Cadeias Pesadas de Imunoglobulinas/metabolismo , Óvulo/fisiologia , Retroviridae/genética , Anticorpos de Domínio Único/metabolismo , Vírion/genética , Animais , Animais Geneticamente Modificados , Camelus , Células Cultivadas , Embrião de Galinha , Engenharia Genética , Proteínas de Fluorescência Verde/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Óvulo/virologia , Sinais Direcionadores de Proteínas/genética , Estabilidade Proteica , Homologia de Sequência de Aminoácidos , Anticorpos de Domínio Único/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA