Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Fertil Steril ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38431184

RESUMO

OBJECTIVE: To study the specific mechanisms through which progesterone and selective progesterone receptor modulators impact the growth, synthesis, and accumulation of the extracellular matrix in uterine leiomyomas. DESIGN: Laboratory study. SETTING: Academic Research Institutions. PATIENTS (S): This study involved reproductive-age women diagnosed with infertility associated uterine leiomyomas who underwent myomectomy either after selective progesterone receptor modulator ulipristal acetate (UA) treatment or without any pharmacological pretreatment. Control samples included healthy myometrium tissue (n = 100). Specimens were obtained from the Department of Reproduction and Gynecological Endocrinology and Biobank, Medical University of Bialystok, Poland. INTERVENTIONS: Daily (5 mg/d) UA treated for 2 months (n = 100) and untreated (n = 150) patients with uterine leiomyomas or normal healthy myometrium (n = 100) tissue samples immediately after surgery were collected for transcriptional analysis and assessments. MAIN OUTCOME MEASURES: Progesterone-induced activation of the signaling pathways related to uterine leiomyomas extracellular matrix synthesis, deposition, and growth, as well as the expression profile of progesterone receptors in uterine leiomyomas, were assessed. RESULTS: The results indicated that progesterone activated the transforming growth factor-ß and SMAD3 signaling pathways and promoted proliferation, growth, and extracellular matrix remodeling in uterine leiomyomas by up-regulating SMAD3, transforming growth factor-ß (TGF-ß) receptor type 1 and II, Ras homolog A, vascular endothelial growth factor, or increasing the fibrosis-related gene collagen, type I, ɑ-1, and procollagen, type I, ɑ-1 production. In contrast, UA had inhibitory effects on these processes. The study also showed that both nuclear and membrane progesterone receptors play distinct roles in uterine leiomyoma pathobiology. CONCLUSIONS: We showed that both nuclear and membrane progesterone receptors were relevant in the treatment of uterine leiomyomas, especially when combined with selective progesterone receptor modulators. Novel therapeutic approaches combining selective progesterone receptor modulators with or without direct and indirect extracellular matrix targeting through selected specifically TGF-ß and SMAD3 (SMAD3, TGF-ß receptor types 1 and II, Ras homolog A, vascular endothelial growth factor, collagen, type I, ɑ-1) signaling pathways could therefore be a treatment option for uterine leiomyomas.

2.
Adv Med Sci ; 69(1): 21-28, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278085

RESUMO

Uterine leiomyomas (ULs) are the most common benign smooth muscle cell steroid-dependent tumors that occur in women of reproductive age. Progesterone (P4) is a major hormone that promotes the ULs development and growth. P4 action in ULs is mediated mainly by its nuclear progesterone receptors (PGRs), although rapid non-genomic responses have also been observed. Data on the membrane progesterone receptors (mPRs) regulated signaling pathways in ULs in the available literature is still very limited. One of the essential characteristics of ULs is the excessive production of extracellular matrix (ECM). P4 has been shown to stimulate ECM production and collagen synthesis in ULs. Recent research demonstrated that, despite their benign nature, ULs may present with abnormal vasculature. P4 has been shown to regulate angiogenesis in ULs through the upregulation of vascular endothelial growth factor (VEGF) and by controlling the secretion of permeability factors. This review summarizes the key findings regarding the role of PGRs and mPRs in ULs, especially highlighting the potential ECM and angiogenesis modulation by P4. An increased understanding of this mechanistic role of nuclear and specifically mPRs in the biology of P4-modulated ECM and angiogenesis in the growth of ULs could turn out to be fundamental for developing effective targeted therapies for ULs.


Assuntos
Leiomioma , Progesterona , Receptores de Progesterona , Transdução de Sinais , Neoplasias Uterinas , Humanos , Leiomioma/metabolismo , Leiomioma/patologia , Progesterona/metabolismo , Feminino , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Neoplasias Uterinas/tratamento farmacológico , Receptores de Progesterona/metabolismo , Matriz Extracelular/metabolismo , Terapia de Alvo Molecular
3.
Mol Cancer ; 22(1): 104, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408008

RESUMO

BACKGROUND: The treatment of Triple-negative breast cancer (TNBC) has always been challenging due to its heterogeneity and the absence of well-defined molecular targets. The present study aims to elucidate the role of protein-coding circRNAs in the etiology and carcinogenesis of TNBC. METHODS: CircRNA expression data in TNBC (GEO: GSE113230, GSE101123) were reanalyzed and then circCAPG was selected for further study. To identify the polypeptide-coding function of circCAPG, a series of experiments, such as Mass spectrometry and dual-luciferase reporter assays were conducted. Cell proliferation, apoptosis and metastasis parameters were determined to investigate the cancerous functions CAPG-171aa plays in both TNBC organoids and nude mice. Mechanistically, the relation between CAPG-171aa and STK38 in TNBC was verified by immunoprecipitation analyses and mass spectrometry. The interactions between SLU7 and its binding site on circCAPG were validated by RIP-qPCR experiments. RESULTS: In both TNBC clinical samples and cell lines, the expression level of circCAPG was identified to be higher compared with normal ones and positively correlated with the overall survival (n = 132) in a 10-year follow-up study, in which the area under the curve of receiver operating characteristic was 0.8723 with 100% specificity and 80% sensitivity. In addition, we found that circCAPG knockdown (KD) significantly inhibited the growth of TNBC organoids. Intriguingly, circCAPG can be translated into a polypeptide named CAPG-171aa which promotes tumor growh by disrupting the binding of serine/threonine kinase 38 (STK38) to SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) and thereby preventing MEKK2 ubiquitination and proteasomal degradation. Furthermore, we found that SLU7 Homolog- Splicing Factor (SLU7) can regulate the bio-generation of circCAPG through binding to the flanking Alu sequences of circRNA transcripts. CONCLUSIONS: circCAPG significantly enhances the proliferation and metastasis of TNBC cells by encoding a novel polypeptide CAPG-171aa and afterwards activates MEKK2-MEK1/2-ERK1/2 pathway. Additionally, the formation of circCAPG is found to be mediated by SLU7. The present study provides innovative insight into the role of protein-coding circRNAs CAPG-171aa in TNBC, and its capacity to serve as a promising prognostic biomarker and potential therapeutic target in TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , MicroRNAs/genética , RNA Circular/genética , Neoplasias de Mama Triplo Negativas/patologia , Camundongos Nus , Seguimentos , Proliferação de Células/genética , Peptídeos/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fatores de Processamento de RNA/genética , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/genética
4.
Mol Cancer ; 22(1): 16, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691031

RESUMO

BACKGROUND: hsa_circ_0001727 (circZKSCAN1) has been reported to be a tumor-associated circRNA by sponging microRNAs. Intriguingly, we found that circZKSCAN1 encoded a secretory peptide (circZKSaa) in the liver. The present study aims to elucidate the potential role and molecular mechanism of circZKSaa in the regulation of hepatocellular carcinoma (HCC) progression. METHODS: The circRNA profiling datasets (RNA-seq data GSE143233 and GSE140202) were reanalyzed and circZKSCAN1 was selected for further study. Mass spectrometry, polysome fractionation assay, dual-luciferase reporter, and a series of experiments showed that circZKSCAN1 encodes circZKSaa. Cell proliferation, apoptosis, and tumorigenesis in nude mice were examined to investigate the functions of circZKSaa. Mechanistically, the relationship between the circZKSaa and mTOR in HCC was verified by immunoprecipitation analyses, mass spectrometry, and immunofluorescence staining analyses. RESULTS: Receiver operating characteristic (ROC) analysis demonstrated that the secretory peptide circZKSaa encoded by circZKSCAN1 might be the potential biomarker for HCC tissues. Through a series of experiments, we found that circZKSaa inhibited HCC progression and sensitize HCC cells to sorafenib. Mechanistically, we found that the sponge function of circZKSCAN1 to microRNA is weak in HCC, while overexpression of circZKSaa promoted the interaction of FBXW7 with the mammalian target of rapamycin (mTOR) to promote the ubiquitination of mTOR, thereby inhibiting the PI3K/AKT/mTOR pathway. Furthermore, we found that the high expression of cicZKSCAN1 in sorafenib-treated HCC cells was regulated by QKI-5. CONCLUSIONS: These results reveal that a novel circZKSCAN1-encoded peptide acts as a tumor suppressor on PI3K/AKT/mTOR pathway, and sensitizes HCC cells to sorafenib via ubiquitination of mTOR. These findings demonstrated that circZKSaa has the potential to serve as a therapeutic target and biomarker for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Mamíferos/genética , Mamíferos/metabolismo , Camundongos Nus , MicroRNAs/genética , Peptídeos/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Sirolimo , Sorafenibe , Serina-Treonina Quinases TOR/metabolismo , Humanos
5.
Transl Res ; 256: 1-13, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36586536

RESUMO

Polycystic ovary syndrome (PCOS), characterized by the androgen excess and arrest of antral follicles, is a common endocrine disorder among women lacking specific diagnostic biomarkers and therapeutic targets. Herein, we studied the molecular mechanism of miR-96-5p in the process of PCOS and its potential applications in PCOS. Clinically, we found that miR-96-5p significantly decreased in serum, follicular fluid and primary human granulosa cells (hGCs) of PCOS patients (n = 70) vs non-PCOS women (n = 60), as well as in the ovaries of 3-types of induced PCOS-like mice. Furthermore, we demonstrated that the elevated circulating miR-96-5p levels were significantly correlated with the PCOS disordered endocrine clinical features, and the area under the curve of receiver operating characteristic was 0.8344, with 75.71% specificity and 80% sensitivity. Mechanically, we identified miR-96-5p as an androgen-regulated miRNA that directly targets the forkhead transcription factor FOXO1. Inhibition of miR-96-5p decreased estrogen synthesis, while decreasing the cell proliferation index of KGN via regulating the expression of FOXO1 and its downstream genes. Inversely, inhibition of FOXO1 abrogated the effect of miR-96-5p on estrogen synthesis and proliferation index. Of note, ovarian intra-bursal injection of miR-96-5p agomir rescued the phenotypes of dehydroepiandrosterone-induced PCOS like mice. In conclusion, our results clarified a vital role of miR-96-5p in the pathogenesis of PCOS and might serve as a novel diagnostic biomarker and therapeutic target for PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/terapia , Androgênios/efeitos adversos , Androgênios/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células da Granulosa/metabolismo , Estrogênios
6.
Transl Res ; 252: 64-78, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35931409

RESUMO

Polycystic ovary syndrome (PCOS) is a common endocrine disorder of unknown etiology that occurs in women of reproductive age. Despite being considered to affect up to one-fifth of women in this cohort, the condition lacks generally accepted diagnostic biomarkers and options for targeted therapy. Hereby, we analyzed the diagnostic, therapeutic, and functional potential of a recently discovered miR-335-5p that was observed to be reduced in the follicular fluid (FF) of PCOS patients as compared with healthy women. We found miR-335-5p to be significantly decreased in the serum and FF samples of PCOS patients (n = 40) vs healthy women (n = 30), as well as in primary human granulosa cells (hGCs), and in 3 different hormonally induced PCOS-like murine models vs. wild-type (WT) mice. The level of circulating miR-335-5p was found to significantly correlate with the impaired endocrine and clinical features associated with PCOS in human patients. Ovarian intrabursal injection of the miR-335-5p antagomir in WT mice ovaries induced a PCOS-like reproductive phenotype. Treatment with the miR-335-5p agomir rescued the dihydrotestosterone-induced PCOS-phenotype in mice, thereby providing a functional link between miR-335-5p and PCOS. We identified SP1 as a miR-335-5p target gene by using the dual-luciferase reporter assay. Both the luciferase reporter assay and chromatin immunoprecipitation assay showed that SP1 bound to the promoter region of human CYP19A1 and inhibited its transcription. miR-335-5p increased the production of estradiol via the SP1/CYP19A1 axis in hGCs, thereby suggesting its mechanistic pathway of action. In conclusion, these results provide evidence that miR-335-5p may function as a mediator in the etiopathogenesis of PCOS, as well as has the potential as both a novel diagnostic biomarker and therapeutic target for PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Animais , Camundongos , Síndrome do Ovário Policístico/genética , MicroRNAs/metabolismo , Células da Granulosa/metabolismo , Estradiol , Luciferases/metabolismo
7.
Mol Cell Endocrinol ; 539: 111502, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34736966

RESUMO

The expression of the zona pellucida glycoprotein 3 (ZP3), originally thought to be specific for oocytes, was recently extended to ovarian, prostate, colorectal and lung cancers. Earlier successful ZP3 immunization of a transgenic mouse model carrying a ZP3 positive ovarian tumor emphasized the suitability of ZP3 for cancer immunotherapy. This study was carried out to determine whether any other normal tissues besides the ovary in healthy human and mouse tissues may express ZP3, considered important to exclude off-target effects of ZP3 cancer immunotherapy. Strong ZP3 expression was found in normal human and mouse testis. ZP3 protein and mRNA transcripts were localized in spermatogonia, spermatocytes and round and elongated spermatids of both human and mouse testis, as well as in a mouse spermatogonial cell line, but absent in testicular Sertoli, Leydig, spermatogonial stem and progenitor cells. All other normal human and mouse tissues were ZP3 negative. This surprising testicular ZP3 expression has implications for the development of ZP3 cancer immunotherapies, and it also alludes to the potential of using ZP3 as a target for the development of a male immunocontraceptive.


Assuntos
Testículo/metabolismo , Regulação para Cima , Glicoproteínas da Zona Pelúcida/genética , Glicoproteínas da Zona Pelúcida/metabolismo , Adulto , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células de Sertoli/metabolismo , Espermátides/metabolismo , Espermatócitos/metabolismo , Espermatogônias/metabolismo , Distribuição Tecidual
8.
Nat Commun ; 12(1): 6121, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675215

RESUMO

In obesity, macrophages drive a low-grade systemic inflammation (LSI) and insulin resistance (IR). The ribosome biosynthesis protein NOC4 (NOC4) mediates 40 S ribosomal subunits synthesis in yeast. Hereby, we reported an unexpected location and function of NOC4L, which was preferentially expressed in human and mouse macrophages. NOC4L was decreased in both obese human and mice. The macrophage-specific deletion of Noc4l in mice displayed IR and LSI. Conversely, Noc4l overexpression by lentivirus treatment and transgenic mouse model improved glucose metabolism in mice. Importantly, we found that Noc4l can interact with TLR4 to inhibit its endocytosis and block the TRIF pathway, thereafter ameliorated LSI and IR in mice.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endossomos/metabolismo , Resistência à Insulina , Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Modelos Animais de Doenças , Endossomos/genética , Feminino , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/genética
9.
FASEB J ; 35(4): e21464, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724574

RESUMO

Chemical castration in prostate cancer can be achieved with gonadotropin-releasing hormone (GnRH) agonists or antagonists. Their effects differ by the initial flare of gonadotropin and testosterone secretion with agonists and the immediate pituitary-testicular suppression by antagonists. While both suppress luteinizing hormone (LH) and follicle-stimulating hormone (FSH) initially, a rebound in FSH levels occurs during agonist treatment. This rebound is potentially harmful, taken the expression of FSH receptors (R) in prostate cancer tissue. We herein assessed the role of FSH in promoting the growth of androgen-independent (PC-3, DU145) and androgen-dependent (VCaP) human prostate cancer cell line xenografts in nude mice. Gonadotropins were suppressed with the GnRH antagonist degarelix, and effects of add-back human recombinant FSH were assessed on tumor growth. All tumors expressed GnRHR and FSHR, and degarelix treatment suppressed their growth. FSH supplementation reversed the degarelix-evoked suppression of PC-3 tumors, both in preventive (degarelix and FSH treatment started upon cell inoculation) and therapeutic (treatments initiated 3 weeks after cell inoculation) setting. A less marked, though significant FSH effect occurred in DU145, but not in VCaP xenografts. FSHR expression in the xenografts supports direct FSH stimulation of tumor growth. Testosterone supplementation, to maintain the VCaP xenografts, apparently masked the FSH effect on their growth. Treatment with the LH analogue hCG did not affect PC-3 tumor growth despite their expression of luteinizing hormone/choriongonadotropin receptor. In conclusion, FSH, but not LH, may directly stimulate the growth of androgen-independent prostate cancer, suggesting that persistent FSH suppression upon GnRH antagonist treatment offers a therapeutic advantage over agonist.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Xenoenxertos/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Androgênios/farmacologia , Animais , Linhagem Celular , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Masculino , Camundongos Nus , Neoplasias da Próstata/metabolismo , Receptores do FSH , Testículo/metabolismo , Testosterona/farmacologia
10.
Cancers (Basel) ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158280

RESUMO

The selective progesterone receptor modulator mifepristone (MF) may act as a potent antiproliferative agent in different steroid-dependent cancers due to its strong antagonistic effect on the nuclear progesterone receptor (PGR). Hereby, we analyzed the effects of MF treatment on Leydig cell tumor (LCT) progression in a transgenic mouse model (inhibin-α promoter-driven SV40 T-antigen), as well as on LCT (BLTK-1 and mLTC-1) cell proliferation. MF significantly stimulated the proliferation of LCT in vitro. Similarly, a 1-mo MF or P4 treatment stimulated LCT tumor growth in vivo. Traceable/absent classical Pgr or nonclassical membrane PRs α, ß, γ and Pgrmc2, but abundant membrane Pgrmc1 expression, was found in LCTs. MF did not activate glucocorticoid or androgen receptors in LCTs. Functional analysis showed that PGRMC1 is required for MF and P4 to stimulate the proliferation and invasiveness of LCTs. Accordingly, MF and P4 induced PGRMC1 translocation into the nucleus and thereby stimulated the release of TGFß1 in LCT cells. MF and P4 treatments upregulated Tgfbr1, Tgfbr2, and Alk1 expression and stimulated TGFß1 release in LCT cells. Our findings provide novel mechanistic insights into the action of MF as a membrane PR agonist that promotes LCT growth through PGRMC1 and the alternative TGFß1 signaling pathway.

11.
EBioMedicine ; 47: 170-183, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31466918

RESUMO

BACKGROUND: Recent clinical trials on ovarian cancer with mifepristone (MF) have failed, despite in vitro findings on its strong progesterone (P4) antagonist function. METHODS: Ovarian cancer human and murine cell lines, cultured high-grade human primary epithelial ovarian cancer (HG-hOEC) cells and their explants; as well as in vivo transgenic mice possessing ovarian cancer were used to assess the molecular mechanism underlying mifepristone (MF) agonistic actions in ovarian cancer progression. FINDINGS: Herein, we show that ovarian cancer cells express traceable/no nuclear P4 receptor (PGR), but abundantly P4 receptor membrane component 1 (PGRMC1). MF significantly stimulated ovarian cancer cell migration, proliferation and growth in vivo, and the translocation of PGRMC1 into the nucleus of cancer cells; the effects inhibited by PGRMC1 inhibitor. The beneficial antitumor effect of high-doses MF could not be achieved in human cancer tissue, and the low tissue concentrations achieved with the therapeutic doses only promoted the growth of ovarian cancers. INTERPRETATION: Our results indicate that treatment of ovarian cancer with MF and P4 may induce similar adverse agonistic effects in the absence of classical nuclear PGRs in ovarian cancer. The blockage of PGRMC1 activity may provide a novel treatment strategy for ovarian cancer. FUND: This work was supported by grants from the National Science Centre, Poland (2013/09/N/NZ5/01831 to DP-T; 2012/05/B/NZ5/01867 to MC), Academy of Finland (254366 to NAR), Moikoinen Cancer Research Foundation (to NAR) and EU PARP Cluster grant (UDA-POIG.05.01.00-005/12-00/NCREMFP to SW).


Assuntos
Antineoplásicos Hormonais/farmacologia , Mifepristona/farmacologia , Animais , Antineoplásicos Hormonais/administração & dosagem , Antineoplásicos Hormonais/farmacocinética , Biomarcadores , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mifepristona/administração & dosagem , Mifepristona/farmacocinética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
12.
J Steroid Biochem Mol Biol ; 193: 105420, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31283987

RESUMO

Mutations in the X-linked androgen receptor (AR) gene cause complete androgen insensitivity syndrome (CAIS). CAIS may cause congenital sexual development disorder, which frequently develops into testicular tumors. Here, we describe a novel splice-site intron 1 mutation in AR leading to improper splicing and AR protein absence in CAIS gonads. We characterized a patient's postpubertal gonadal steroidogenic enzyme expression profile. Localization of both CYP11A1 and CYP17A1 enzymes was restricted to both Leydig tumor cells and adjacent to tumor gonadal tissues. Sertoli cells of the CAIS gonad showed abundant HSD17B3 protein, which is an adult Leydig cell marker that enables the conversion of androstenedione to testosterone. Such HSD17B3 expression is typical for fetal-type Sertoli cells in rodents. The postpubertal CAIS gonad of our patient was completely devoid of androgen signaling pathway activity. Plausibly, the postpubertal Leydig cells consisted of two distinct cell populations: postpubertal fetal-type Leydig cells that persisted as androgen-independent cells and immature adult Leydig cells that failed to differentiate. Taken together, in this CAIS postpubertal testis, both Leydig and fetal-type Sertoli cells participated in testosterone production. Our results indicate the importance of molecular analysis as well as the characterization of steroidogenic enzyme profiling in the CAIS patient's gonad.


Assuntos
Síndrome de Resistência a Andrógenos/genética , Receptores Androgênicos/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Síndrome de Resistência a Andrógenos/metabolismo , Androgênios/metabolismo , Feminino , Feto/metabolismo , Gônadas/metabolismo , Hormônios/sangue , Humanos , Íntrons , Masculino , Mutação , Receptores Androgênicos/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-30778333

RESUMO

Expression of the follicle-stimulating hormone receptor (FSHR), besides gonadal tissues, has recently been detected in several extragonadal normal and tumorous tissues, including different types of primary and metastatic cancer and tumor vessel endothelial cells (TVEC). The suggested FSH actions in extragonadal tissues include promotion of angiogenesis, myometrial contractility, skeletal integrity, and adipose tissue accumulation. Non-malignant cells within cancer tissue have been shown to be devoid of FSHR expression, which implies a potential role of FSHR as a diagnostic, prognostic, or even a therapeutic tool. There are shared issues between several of the published reports questioning the validity of some of the conclusion. Firstly, protein expression of FSHR was performed solely with immunohistochemistry (IHC) using either an unavailable "in house" FSHR323 monoclonal antibody or poorly validated polyclonal antibodies, usually without additional methodological quality control and confirmations. Secondly, there is discrepancy between the hardly traceable or absent FSHR gene amplification/transcript data and non-reciprocal strong FSHR protein immunoreactivity. Thirdly, the pharmacological high doses of recombinant FSH used in in vitro studies also jeopardizes the physiological or pathophysiological meaning of the findings. We performed in this review a critical analysis of the results presenting extragonadal expression of FSHR and FSH action, and provide a rationale for the validation of the reported results using additional more accurate and sensitive supplemental methods, including in vivo models and proper positive and negative controls.

14.
Endocr Relat Cancer ; 26(1): 103-117, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400009

RESUMO

Aberrantly expressed G protein-coupled receptors in tumors are considered as potential therapeutic targets. We analyzed the expressions of receptors of gonadotropin-releasing hormone (GNRHR), luteinizing hormone/chorionic gonadotropin (LHCGR) and follicle-stimulating hormone (FSHR) in human adrenocortical carcinomas and assessed their response to GnRH antagonist therapy. We further studied the effects of the GnRH antagonist cetrorelix acetate (CTX) on cultured adrenocortical tumor (ACT) cells (mouse Cα1 and Y-1, and human H295R), and in vivo in transgenic mice (SV40 T-antigen expression under inhibin α promoter) bearing Lhcgr and Gnrhr in ACT. Both models were treated with control (CT), CTX, human chorionic gonadotropin (hCG) or CTX+hCG, and their growth and transcriptional changes were analyzed. In situ hybridization and qPCR analysis of human adrenocortical carcinomas (n = 11-13) showed expression of GNRHR in 54/73%, LHCGR in 77/100% and FSHR in 0%, respectively. CTX treatment in vitro decreased cell viability and proliferation, and increased caspase 3/7 activity in all treated cells. In vivo, CTX and CTX+hCG (but not hCG alone) decreased ACT weights and serum LH and progesterone concentrations. CTX treatment downregulated the tumor markers Lhcgr and Gata4. Upregulated genes included Grb10, Rerg, Nfatc and Gnas, all recently found to be abundantly expressed in healthy adrenal vs ACT. Our data suggest that CTX treatment may improve the therapy of human adrenocortical carcinomas by direct action on GNRHR-positive cancer cells inducing apoptosis and/or reducing gonadotropin release, directing tumor cells towards a healthy adrenal gene expression profile.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/uso terapêutico , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Antagonistas de Hormônios/farmacologia , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo
15.
Cell Physiol Biochem ; 43(3): 1064-1076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28977799

RESUMO

BACKGROUND/AIMS: Physiological role of luteinizing hormone (LH) and its receptor (LHCGR) in adrenal remains unknown. In inhibin-α/Simian Virus 40 T antigen (SV40Tag) (inhα/Tag) mice, gonadectomy-induced (OVX) elevated LH triggers the growth of transcription factor GATA4 (GATA4)-positive adrenocortical tumors in a hyperplasia-adenoma-adenocarcinoma sequence. METHODS: We investigated the role of LHCGR in tumor induction, by crossbreeding inhα/Tag with Lhcgr knockout (LuRKO) mice. By knocking out Lhcgr and Gata4 in Cα1 adrenocortical cells (Lhcgr-ko, Gata4-ko) we tested their role in tumor progression. RESULTS: Adrenal tumors of OVX inhα/Tag mice develop from the hyperplastic cells localized in the topmost layer of zona fasciculata. OVX inhα/Tag/LuRKO only developed SV40Tag positive hyperplastic cells that were GATA4 negative, cleaved caspase-3 positive and did not progress into adenoma. In contrast to Lhcgr-ko, Gata4-ko Cα1 cells presented decreased proliferation, increased apoptosis, decreased expression of Inha, SV40Tag and Lhcgr tumor markers, as well as up-regulated adrenal- and down-regulated sex steroid gene expression. Both Gata4-ko and Lhcgr-ko Cα1 cells had decreased expression of steroidogenic genes resulting in decreased basal progesterone production. CONCLUSION: Our data indicate that LH/LHCGR signaling is critical for the adrenal cell reprogramming by GATA4 induction prompting adenoma formation and gonadal-like phenotype of the adrenocortical tumors in inhα/Tag mice.


Assuntos
Neoplasias do Córtex Suprarrenal/patologia , Fator de Transcrição GATA4/metabolismo , Hormônio Luteinizante/metabolismo , Neoplasias do Córtex Suprarrenal/etiologia , Neoplasias do Córtex Suprarrenal/metabolismo , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Apoptose , Sistemas CRISPR-Cas/genética , Caspase 3/metabolismo , Proliferação de Células , Transformação Celular Neoplásica , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Regulação para Baixo , Feminino , Fluorimunoensaio , Fator de Transcrição GATA4/deficiência , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/metabolismo , Gônadas/cirurgia , Inibinas/genética , Inibinas/metabolismo , Hormônio Luteinizante/sangue , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Fosfoproteínas/metabolismo , Receptores do LH/deficiência , Receptores do LH/genética , Fator Esteroidogênico 1/metabolismo
16.
Mol Cell Endocrinol ; 444: 9-18, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28131743

RESUMO

Specific inbred strains and transgenic inhibin-α Simian Virus 40 T antigen (inhα/Tag) mice are genetically susceptible to gonadectomy-induced adrenocortical neoplasias. We identified altered gene expression in prepubertally gonadectomized (GDX) inhα/Tag and wild-type (WT) mice. Besides earlier reported Gata4 and Lhcgr, we found up-regulated Esr1, Prlr-rs1, and down-regulated Grb10, Mmp24, Sgcd, Rerg, Gnas, Nfatc2, Gnrhr, Igf2 in inhα/Tag adrenal tumors. Sex-steroidogenic enzyme genes expression (Srd5a1, Cyp19a1) was up-regulated in tumors, but adrenal-specific steroidogenic enzyme (Cyp21a1, Cyp11b1, Cyp11b2) down-regulated. We localized novel Lhcgr transcripts in adrenal cortex parenchyma and in non-steroidogenic A cells, in GDX WT and in intact WT mice. We identified up-regulated Esr1 as a potential novel biomarker of gonadectomy-induced adrenocortical tumors in inhα/Tag mice presenting with an inverted adrenal-to-gonadal steroidogenic gene expression profile. A putative normal adrenal remodeling or tumor suppressor role of the down-regulated genes (e.g. Grb10, Rerg, Gnas, and Nfatc2) in the tumors remains to be addressed.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Genes Neoplásicos , Gonadotropinas/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Fatores de Transcrição GATA/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Esteroides/biossíntese
17.
J Clin Endocrinol Metab ; 101(7): 2905-14, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27224263

RESUMO

CONTEXT: FSH receptor (FSHR), besides being expressed in gonads, is also expressed in some extragonadal tissues at low levels. OBJECTIVE: We examined the functional expression of FSHR in different types of endometriotic lesions. DESIGN: Extensive studies were carried out to detect functional FSHR expression and FSH-stimulated estrogen production in ovarian endometriomas and recto-vaginal endometriotic nodules (RVEN). Normal endometrium, ovary, and myometrium tissues from nonpregnant cycling women served as controls. SETTINGS: This laboratory-based study was carried out on tissue specimens from patients with endometriosis and healthy donors. RESULTS: Endometriotic lesions and normal secretory-phase endometrium showed FSHR expression at both mRNA and protein level. RVEN and ovarian endometrioma demonstrated up-regulated CYP19A1, dependent on the activation of CYP19A1 proximal promoter II. Estrogen receptor-ß (ESR2) expression was significantly increased in RVEN vs normal endometrium. Recombinant human FSH stimulation of RVEN explants significantly increased estradiol production and CYP19A1 and ESR2 expression. FSHR was up-regulated in recombinant human FSH-stimulated endometrial and decidualized stromal cells with increased CYP19A1 expression. CONCLUSIONS: We described a novel functional FSHR expression, where FSH-stimulated CYP19A1 expression and estrogen production in RVEN are demonstrated. This locally FSH-induced estrogen production may contribute to the pathology, development, progression, and severity of RVEN.


Assuntos
Aromatase/genética , Endometriose/genética , Endométrio/metabolismo , Receptores do FSH/genética , Doenças Retais/genética , Doenças Vaginais/genética , Adulto , Aromatase/metabolismo , Estudos de Casos e Controles , Endometriose/patologia , Endométrio/efeitos dos fármacos , Endométrio/patologia , Estradiol/metabolismo , Receptor beta de Estrogênio/fisiologia , Feminino , Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doenças Ovarianas/genética , Doenças Ovarianas/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores do FSH/metabolismo , Doenças Retais/patologia , Doenças Vaginais/patologia , Adulto Jovem
18.
Cancer Immunol Immunother ; 64(11): 1487-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26289091

RESUMO

The efficacy of immunotherapy in cancer patients is influenced by differences in their immune status. An evaluation of immunocompetence before therapy may help to predict therapeutic success and guide the selection of appropriate regimens. We assessed the preexisting cellular immunity against prostate-specific antigen (PSA) in untreated prostate cancer patients and healthy controls through measurement of the phenotype and function of CD8(+) T cells. Our data show that the majority of healthy men possess functional PSA-specific CD8(+) T cells in contrast to cancer patients, where <50 % showed a CD8(+) T cell response. PSA146-154-specific CD8(+) T cells of these patients had a higher expression of the activation marker CD38 and the exhaustion marker Tim-3, indicating that PSA-specific cells are exhausted. The heterogeneity of the CD8(+) T cell response against PSA in prostate cancer patients may influence their response to therapy and is a factor to be taken into account while designing and selecting treatment regimens.


Assuntos
ADP-Ribosil Ciclase 1/análise , Linfócitos T CD8-Positivos/imunologia , Glicoproteínas de Membrana/análise , Proteínas de Membrana/análise , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/imunologia , Idoso , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/química , Neoplasias da Próstata/terapia
19.
J Clin Invest ; 124(6): 2709-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24762434

RESUMO

Male infertility accounts for almost half of infertility cases worldwide. A subset of infertile men exhibit reduced testosterone and enhanced levels of estradiol (E2), though it is unclear how increased E2 promotes deterioration of male fertility. Here, we utilized a transgenic mouse strain that overexpresses human CYP19, which encodes aromatase (AROM+ mice), and mice with knockout of Esr1, encoding estrogen receptor α (ERαKO mice), to analyze interactions between viable Leydig cells (LCs) and testicular macrophages that may lead to male infertility. In AROM+ males, enhanced E2 promoted LC hyperplasia and macrophage activation via ERα signaling. E2 stimulated LCs to produce growth arrest-specific 6 (GAS6), which mediates phagocytosis of apoptotic cells by bridging cells with surface exposed phosphatidylserine (PS) to macrophage receptors, including the tyrosine kinases TYRO3, AXL, and MER. Overproduction of E2 increased apoptosis-independent extrusion of PS on LCs, which in turn promoted engulfment by E2/ERα-activated macrophages that was mediated by AXL-GAS6-PS interaction. We further confirmed E2-dependant engulfment of LCs by real-time 3D imaging. Furthermore, evaluation of molecular markers in the testes of patients with nonobstructive azoospermia (NOA) revealed enhanced expression of CYP19, GAS6, and AXL, which suggests that the AROM+ mouse model reflects human infertility. Together, these results suggest that GAS6 has a potential as a clinical biomarker and therapeutic target for male infertility.


Assuntos
Estradiol/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Adulto , Animais , Aromatase/genética , Aromatase/metabolismo , Azoospermia/genética , Azoospermia/metabolismo , Azoospermia/patologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Humanos , Infertilidade Masculina/etiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Biológicos , Fagocitose , Fosfolipídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Testículo/metabolismo , Testículo/patologia , Adulto Jovem
20.
Reprod Biol ; 14(1): 25-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24607252

RESUMO

Granulosa cell tumors are rare, 3-7.6% of primary ovarian tumors, although with poor prognosis as the tumor-related mortality rate is 37.3%, with 80% of deaths occurring on recurrence. We have created a transgenic (TG) murine model for gonadal somatic cell tumors by expressing the powerful viral oncogene, Simian Virus 40 T-antigen (Tag), under the regulation of murine inhibin α-subunit 6 kb promoter (inhα/Tag). Gonadotropin dependent ovarian granulosa cell tumors were formed in females by the age of 5-6 months, with a 100% penetrance. We have successfully used the inhα/Tag model to test different treatment strategies for ovarian tumors. With a gene therapy trial in inhα/Tag mice crossbred with inhα/HSV-TK (herpes simplex virus thymidine kinase) mice (double TG), we proved the principle that targeted expression of HSV-TK gene in gonadal somatic cell tumors enabled tumor ablation by anti-herpes treatment. When we aimed at targeted destruction of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) expressing inhα/Tag tumor cells in vivo by a lytic peptide Hecate-CGß conjugate, we could successfully kill the tumor cells, sparing the normal cells. We recently found high zona pellucida glycoprotein 3 (ZP3) expression in inhα/Tag granulosa cell tumors, as well as in human granulosa cell tumors. We tested the concept of treating the ovarian tumors of inhα/Tag mice by vaccination against the ectopically expressed ZP3. Immunotherapy with recombinant human (rh) ZP3 was highly successful with no objective side effects in inhα/Tag females, suggesting rhZP3 immunization as a novel strategy for the immunotherapy of ovarian granulosa cell tumors.


Assuntos
Tumor de Células da Granulosa/terapia , Inibinas/genética , Neoplasias Ovarianas/terapia , Regiões Promotoras Genéticas , Animais , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Modelos Animais de Doenças , Feminino , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Vírus 40 dos Símios/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA